scholarly journals A quantitative study of cotyledon positioning in conifer development

Botany ◽  
2016 ◽  
Vol 94 (11) ◽  
pp. 1063-1074 ◽  
Author(s):  
David M. Holloway ◽  
Byron Brook ◽  
JooHyun Kang ◽  
Cameron Wong ◽  
Michael Wu

The number of cotyledons in angiosperm monocots and dicots is tightly constrained. But in the gymnosperm Pinaceae (pine family), which includes many of the conifers, cotyledon number (nc) can vary widely, commonly from 2 to 12. Conifer cotyledons form in whorled rings on a domed embryo geometry. We measured the diameter of embryos and counted the cotyledons to determine the radial positioning of the whorl and the circumferential spacing between cotyledons. Results were similar between Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Sitka spruce (Picea sitchensis (L.) H.Karst.), and larch (Larix × leptoeuropaea, synonymous with L. × marschlinsii Coaz), indicating a common mechanism for cotyledon positioning in conifers. Disrupting transport of the growth regulator auxin (with 1-N-naphthylphthalamic acid (NPA)) led to cup-shaped embryos, indicating that whorl (ring) formation is separable from cotyledon patterning within the ring. NPA inhibits cotyledon outgrowth, but not the spacing (distance) between cotyledons. The NPA effect is direct; it does not operate indirectly on embryo size. These results support a hierarchical model for cotyledon positioning in conifers, in which a first stage (not requiring auxin transport) sets the whorl position, constraining the second stage (which requires auxin transport) to form cotyledons within this whorl. Similarly, recent studies in Arabidopsis have shown that different components of complex developmental patterns can have different transport properties; this aspect of patterning may be shared across plants.

2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


2017 ◽  
Vol 70 (3) ◽  
Author(s):  
Marian Saniewski ◽  
Justyna Góraj-Koniarska ◽  
Eleonora Gabryszewska ◽  
Kensuke Miyamoto ◽  
Junichi Ueda

The effects of <em>N</em>-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) on the swelling of the stem in intact and decapitated plants of <em>Bryophyllum calycinum</em> in relation to the interaction with auxin, indole-3-acetic acid (IAA), are described. NPA induced conspicuous local internode swelling only in the area of its application in intact plants and in the decapitated internode in the case of simultaneous application of IAA on the top of the internode. By contrast, TIBA applied to an internode of intact plants induced swelling along the entire internode above the treatment area, and similar results were obtained in the decapitated internode when TIBA was applied in the middle of the internode and IAA was applied onto the top of the internode. The differential effect of NPA and TIBA on stem swelling in <em>B. calycinum</em> is discussed in relation to their differential mode of action on auxin transport.


1997 ◽  
Vol 9 (5) ◽  
pp. 745 ◽  
Author(s):  
Max Ruegger ◽  
Elizabeth Dewey ◽  
Lawrence Hobbie ◽  
Dana Brown ◽  
Paul Bernasconi ◽  
...  

Weed Science ◽  
1977 ◽  
Vol 25 (2) ◽  
pp. 142-144
Author(s):  
Robert M. Devlin ◽  
Stanislaw J. Karczmarczyk

The uptake of naptalam (N-1-naphthylphthalamic acid) by wheat (Triticum vulgareL. ‘Mericopa’) and soybean (Glycine max(L.) Merr. ‘York’) was enhanced when the herbicide was applied simultaneously with SADH (succinic acid-2,2-dimethylhydrazide). Both root and shoot systems of growth regulator-treated plants exhibited enhanced herbicide uptake. Naptalam uptake by wheat seedlings was also stimulated by GA (gibberellic acid), but the GA influence in this respect was less dramatic than that of SADH. The uptake of the herbicide by soybean was not influenced by GA.


2003 ◽  
Vol 18 (4) ◽  
pp. 250-258
Author(s):  
Steve Bowers

Abstract This study documented and field-tested a simplified version of the Westside Grading Guidelines as published in the Official Rules Handbook by the Northwest Log Rules Advisory Group. A four-step dichotomous key was documented and field-tested to determine merchantable vs. nonmerchantable logs. The study also documented and field-tested an individual seven-step dichotomous log grading key for evaluating second-growth Douglas-fir (Pseudotsuga menziesii), Sitka spruce (Picea sitchensis), western hemlock (Tsuga heterophylla), and grand fir (Abies grandis) as derived from the Rules For Grading Logs section of the Official Rules Handbook. Results were compared with certified scalers employed by Yamhill Log Scaling & Grading Bureau and Columbia River Log Scaling & Grading Bureau. Eighty-four individuals measured the length, scaling diameter, determined merchantability versus nonmerchantability and assigned log grade for 440 logs. Results showed participants in the study correctly measuring log length 99% of time, scaling diameters were recorded correctly at an 89% rate, and merchantability and log grade at 98 and 97%, respectively. West. J. Appl. For. 18(4):250–258.


2015 ◽  
Vol 112 (35) ◽  
pp. 11102-11107 ◽  
Author(s):  
Linchuan Liu ◽  
Hongning Tong ◽  
Yunhua Xiao ◽  
Ronghui Che ◽  
Fan Xu ◽  
...  

Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.


Sign in / Sign up

Export Citation Format

Share Document