scholarly journals Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice

2015 ◽  
Vol 112 (35) ◽  
pp. 11102-11107 ◽  
Author(s):  
Linchuan Liu ◽  
Hongning Tong ◽  
Yunhua Xiao ◽  
Ronghui Che ◽  
Fan Xu ◽  
...  

Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.

Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 879-887 ◽  
Author(s):  
K. Hadfi ◽  
V. Speth ◽  
G. Neuhaus

To investigate the mechanism of auxin action during pattern formation in dicot embryos, we tested the effects of the natural auxin indole-3-acetic acid (IAA), the auxin transport inhibitor N-(1-naphthyl)thalamic acid (NPA) and the antiauxin p-chlorophenoxyisobutyric acid (PCIB). In vitro treatments of isolated zygotic Brassica juncea embryos with these substances led to a wide range of morphogenetic alterations. Treatment of globular embryos with exogenous auxin (10-40 microM) either completely inhibited morphogenesis, resulting in ball-shaped embryos, or caused the development of egg- and cucumber-shaped embryos, which only consisted of a shortened hypocotyl without any apical structures. Axis duplication was observed sometimes after inhibition of auxin transport in globular embryos, and led to the development of twin embryos. During the transition from globular to heart stage, changes in auxin distribution or activity frequently caused the development of either split-collar or collar-cotyledons. Antiauxin inhibited cotyledon growth, leading to embryos with single or no cotyledons, or inhibited the development of the hypocotyl and the radicle. Inhibition of auxin transport in transition embryos sometimes led to axis broadening, which resulted in the development of two radicles. The described changes in embryo shapes represent arrests in different auxin-regulated developmental steps and phenocopy some Arabidopsis morphogenetic mutants.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 3877-3888 ◽  
Author(s):  
J.L. Nemhauser ◽  
L.J. Feldman ◽  
P.C. Zambryski

The phytohormone auxin has wide-ranging effects on growth and development. Genetic and physiological approaches implicate auxin flux in determination of floral organ number and patterning. This study uses a novel technique of transiently applying a polar auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA), to developing Arabidopsis flowers to further characterize the role of auxin in organogenesis. NPA has marked effects on floral organ number as well as on regional specification in wild-type gynoecia, as defined by morphological and histological landmarks for regional boundaries, as well as tissue-specific reporter lines. NPA's effects on gynoecium patterning mimic the phenotype of mutations in ETTIN, a member of the auxin response factor family of transcription factors. In addition, application of different concentrations of NPA reveal an increased sensitivity of weak ettin alleles to disruptions in polar auxin transport. In contrast, the defects found in spatula gynoecia are partially rescued by treatment with NPA. A model is proposed suggesting an apical-basal gradient of auxin during gynoecium development. This model provides a mechanism linking ETTIN's putative transcriptional regulation of auxin-responsive genes to the establishment or elaboration of tissue patterning during gynoecial development.


Development ◽  
1999 ◽  
Vol 126 (13) ◽  
pp. 2979-2991 ◽  
Author(s):  
J. Mattsson ◽  
Z.R. Sung ◽  
T. Berleth

To assess the role of auxin flows in plant vascular patterning, the development of vascular systems under conditions of inhibited auxin transport was analyzed. In Arabidopsis, nearly identical responses evoked by three auxin transport inhibitor substances revealed an enormous plasticity of the vascular pattern and suggest an involvement of auxin flows in determining the sites of vascular differentiation and in promoting vascular tissue continuity. Organs formed under conditions of reduced auxin transport contained increased numbers of vascular strands and cells within those strands were improperly aligned. In leaves, vascular tissues became progressively confined towards the leaf margin as the concentration of auxin transport inhibitor was increased, suggesting that the leaf vascular system depends on inductive signals from the margin of the leaf. Staged application of auxin transport inhibitor demonstrated that primary, secondary and tertiary veins became unresponsive to further modulations of auxin transport at successive stages of early leaf development. Correlation of these stages to anatomical features in early leaf primordia indicated that the pattern of primary and secondary strands becomes fixed at the onset of lamina expansion. Similar alterations in the leaf vascular responses of alyssum, snapdragon and tobacco plants suggest common functions of auxin flows in vascular patterning in dicots, while two types of vascular pattern alterations in Arabidopsis auxin transport mutants suggest that at least two distinct primary defects can result in impaired auxin flow. We discuss these observations with regard to the relative contributions of auxin transport, auxin sensitivity and the cellular organisation of the developing organ on the vascular pattern.


2013 ◽  
Vol 162 ◽  
pp. 76-81 ◽  
Author(s):  
Qiong Peng ◽  
Huiqun Wang ◽  
Jianhua Tong ◽  
Mohammed Humayun Kabir ◽  
Zhigang Huang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mahpara Fatima ◽  
Xiaokai Ma ◽  
Ping Zhou ◽  
Madiha Zaynab ◽  
Ray Ming

Abstract Background Pollination accelerate sepal development that enhances plant fitness by protecting seeds in female spinach. This response requires pollination signals that result in the remodeling within the sepal cells for retention and development, but the regulatory mechanism for this response is still unclear. To investigate the early pollination-induced metabolic changes in sepal, we utilize the high-throughput RNA-seq approach. Results Spinach variety ‘Cornel 9’ was used for differentially expressed gene analysis followed by experiments of auxin analog and auxin inhibitor treatments. We first compared the candidate transcripts expressed differentially at different time points (12H, 48H, and 96H) after pollination and detected significant difference in Trp-dependent auxin biosynthesis and auxin modulation and transduction process. Furthermore, several auxin regulatory pathways i.e. cell division, cell wall expansion, and biogenesis were activated from pollination to early developmental symptoms in sepals following pollination. To further confirm the role auxin genes play in the sepal development, auxin analog (2, 4-D; IAA) and auxin transport inhibitor (NPA) with different concentrations gradient were sprayed to the spinach unpollinated and pollinated flowers, respectively. NPA treatment resulted in auxin transport weakening that led to inhibition of sepal development at concentration 0.1 and 1 mM after pollination. 2, 4-D and IAA treatment to unpollinated flowers resulted in sepal development at lower concentration but wilting at higher concentration. Conclusion We hypothesized that sepal retention and development might have associated with auxin homeostasis that regulates the sepal size by modulating associated pathways. These findings advanced the understanding of this unusual phenomenon of sepal growth instead of abscission after pollination in spinach.


2020 ◽  
Vol 20 (5) ◽  
pp. 2998-3003
Author(s):  
Jia Liu ◽  
Zhou Wang ◽  
Yanyan Wang

A novel type of magnetic Fe2O3/Fe3O4 heterogeneous microparticles with ellipsoidal macropores was prepared via the ethanol-water reflux and rapid combustion process. The experimental results showed that the volume of absolute ethyl alcohol and the calcination temperature were the key factors to the grain sizes and the magnetic properties, the calcination temperature largely affected the saturation magnetization and the grain size of Fe2O3/Fe3O4 heterogeneous microparticles, and the amount of absolute ethyl alcohol also tremendously affected the saturation magnetization, however, the amount of absolute ethyl alcohol affected little on the grain size. Fe2O3/Fe3O4 heterogeneous microparticles calcined at 200 °C for 1 h with absolute ethyl alcohol of 20 mL had the largest saturation magnetization of 90.1 Am2/kg.


2017 ◽  
Vol 70 (3) ◽  
Author(s):  
Marian Saniewski ◽  
Justyna Góraj-Koniarska ◽  
Eleonora Gabryszewska ◽  
Kensuke Miyamoto ◽  
Junichi Ueda

The effects of <em>N</em>-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) on the swelling of the stem in intact and decapitated plants of <em>Bryophyllum calycinum</em> in relation to the interaction with auxin, indole-3-acetic acid (IAA), are described. NPA induced conspicuous local internode swelling only in the area of its application in intact plants and in the decapitated internode in the case of simultaneous application of IAA on the top of the internode. By contrast, TIBA applied to an internode of intact plants induced swelling along the entire internode above the treatment area, and similar results were obtained in the decapitated internode when TIBA was applied in the middle of the internode and IAA was applied onto the top of the internode. The differential effect of NPA and TIBA on stem swelling in <em>B. calycinum</em> is discussed in relation to their differential mode of action on auxin transport.


Sign in / Sign up

Export Citation Format

Share Document