scholarly journals Investigation of CeTi2O6- and CaZrTi2O7-containing glass–ceramic composite materials

2017 ◽  
Vol 95 (11) ◽  
pp. 1110-1121 ◽  
Author(s):  
Elham Paknahad ◽  
Andrew P. Grosvenor

Glass–ceramic composite materials are being investigated for numerous applications (i.e., textile, energy storage, nuclear waste immobilization applications, etc.) due to the chemical durability and flexibility of these materials. Borosilicate and Fe–Al–borosilicate glass–ceramic composites containing brannerite (CeTi2O6) or zirconolite (CaZrTi2O7) crystallites were synthesized at different annealing temperatures. The objective of this study was to understand the interaction of brannerite or zirconolite-type crystallites within the glass matrix and to investigate how the local structure of these composite materials changed with changing synthesis conditions. Powder X-ray diffraction (XRD) and Backscattered electron (BSE) microprobe images have been used to study how the ceramic crystallites dispersed in the glass matrix. X-ray absorption near edge spectroscopy (XANES) spectra were also collected from all glass–ceramic composite materials. Examination of Ti K-, Ce L3-, Zr K-, Si L2,3-, Fe K-, and Al L2,3-edge XANES spectra from the glass–ceramic composites have shown that the annealing temperature, glass composition, and the loading of the ceramic crystallites in the glass matrix can affect the local environment of the glass–ceramic composite materials. A comparison of the glass–ceramic composites containing brannerite or zirconolite crystallites has shown that similar changes in the long range and local structure of these composite materials occur when the synthesis conditions to form these materials or the composition are changed.

RSC Advances ◽  
2015 ◽  
Vol 5 (99) ◽  
pp. 80939-80949 ◽  
Author(s):  
Esther Rani Aluri ◽  
Andrew P. Grosvenor

Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements.


2011 ◽  
Vol 1 ◽  
pp. 1-4 ◽  
Author(s):  
X. Chatzistavrou ◽  
D. Esteve ◽  
E. Hatzistavrou ◽  
E. Kontonasaki ◽  
K. M. Paraskevopoulos ◽  
...  

2013 ◽  
Vol 45 (3) ◽  
pp. 331-339
Author(s):  
A. Faeghi-Nia

An Apatite-Wollastonite-Phlogopite glass-ceramic composite, was developed by sintering and crystallization of the powdered glass. The non-isothermal and isothermal sintering kinetics were studied for this glass-ceramic. Hot-stage microscopy (HSM) measurements demonstrated that it is possible to sinter and crystallize this glass-ceramic with 80% relative density. The activation energy of sintering was analyzed using previously reported model of sintering and it was obtained Q=193.83 KjmolK-1. Also it was shown that the microstructure of sample is a function of particle size distribution.


2015 ◽  
Vol 756 ◽  
pp. 313-318 ◽  
Author(s):  
Valeriy M. Pogrebenkov ◽  
Kirill S. Kostikov ◽  
E.A. Sudarev ◽  
A.V. Elistratova ◽  
Ksenia S. Kamyshnaya ◽  
...  

Glass-ceramic composite materials based on lead-borate glass and eucryptite – a compound with a negative coefficient of linear thermal expansion (CTE), along with the conditions for their production are studied in this paper. Effects of the amount and granulometric composition of the eucryptite as well as time/temperature processing conditions on the change of the linear thermal expansion coefficient of the sintered samples are also examined.


2007 ◽  
Vol 352 ◽  
pp. 111-114
Author(s):  
Xiao Hu Chen ◽  
Xiao Min Chen ◽  
Huang Zhao ◽  
Ji Huai Wu

The purpose of this paper is to investigate the possibility of rod-like Al2TiO5 / α-Al2O3 composites in situ formation via a mechanical activation process. A QM-ISP-4 Planetary Mill was employed to activate mechanically the mixtures of anatase and corundum in air at room temperature for different times. The milled powder mixtures were pressed into platelets and then sintered in air at 1300°C for 3 h. The XRD results showed that only Al2TiO5 and α-Al2O3 phases could be detected in the sintered samples when the activated time reached 30 hours. The SEM observations illustrated the unusual microstructure of Al2TiO5 / α-Al2O3 ceramic composite materials. Abnormal grains with longitudinal length ~10 μm23 transversal length ~1 μm and equiaxed matrix grains of ~3 μm on an average were observed. EDXA proved that the rod-like grains and the fine equiaxed matrix grains were composed of Al2TiO5 and α-Al2O3, separately. The roles of anisotropic grain growth caused by mechanical activation are discussed for the in situ formation of rod-like Al2TiO5 / α-Al2O3 ceramic composite materials.


2016 ◽  
Vol 694 ◽  
pp. 179-183
Author(s):  
Zurina Shamsudin ◽  
Nursyahidah Salleh ◽  
Jariah Mohd Juoi ◽  
Zaleha Mustafa ◽  
M.R. Zulkifli

The purpose of this study is to investigate the effect of spent bleach earth (SBE) loading on the properties of green glass ceramic (GGC) composite. GGC was prepared using SBE and recycled soda lime silicate (SLS) glass. SLS glass was crushed then sieved to approximately 45µm. These GGC composites were formed with different weight fraction of SBE loading (40, 45 and 55 wt.%) by uniaxial dry pressing and sintered at different sintering temperature (700 °C, 750 °C and 850 °C). The sintering temperatures were selected based on Tg of the glass which is around 416 °C. The GGC specimens were analyzed in terms of its physical properties (density, water absorption and porosity), phase presence (X-Ray diffraction) and sintered microstructure (scanning electron microscopy). X-Ray diffraction pattern indicated that cristobalite, quartz and wallastonite phases were formed during sintering. It was found that the GGC with 45 wt.% of SBE loading sintered at 850 °C produced minimum water absorption which was 4.01% accompanied by density of 2.12 g/cm3 and a porosity of 8.49%. This shows that GGC composite produced with considerable higher amount of waste loading able to obtain acceptable physical durability.


2021 ◽  
Vol 2048 (1) ◽  
pp. 012020
Author(s):  
J W Geringer ◽  
Y Katoh ◽  
S Gonczy ◽  
T Burchell ◽  
M Mitchell ◽  
...  

Abstract Fiber-reinforced ceramic matrix composites have many desirable properties for high-temperature nuclear applications, including excellent thermal and mechanical properties and reasonable to outstanding radiation resistance. Over the last 20 years, the use of ceramic composite materials has already expanded in many commercial nonnuclear industries as fabrication and application technologies mature. The new ASME design and construction rules under Section III, Subsection HH, Subpart B lay out the requirements and criteria for materials, design, machining and installation, inspection, examination, testing, and the marking procedure for ceramic composite core components, which is similar to the established graphite code under Section III, Subsection HH, Subpart A. Moreover, the general requirements listed in Section III, Subsection HA, Subpart B are also expanded to include ceramic composite materials. The code rules rely heavily on the development and publication of standards for composite specification, classification, and testing of mechanical, thermal, and other properties. These test methods are developed in the American Society for Testing and Materials Committee C28 on Advanced Ceramics with a current focus on ceramic composite tubes. Details of the composites code, design methodology, and similarities to the graphite code, as well as guidance for the development of specifications for ceramic composites for nuclear application and recent standard developments, are discussed. The next step is to “close the gap” to support licensing aspects by validating the code with benchmarking data.


Sign in / Sign up

Export Citation Format

Share Document