scholarly journals Shear deformable super-convergent finite element for steel beams strengthened with glass-fiber reinforced polymer (GFRP) plate

2019 ◽  
Vol 46 (4) ◽  
pp. 338-351
Author(s):  
Phe Van Pham ◽  
Magdi Mohareb ◽  
Amir Fam

The present study investigates the flexural behaviour of steel beams strengthened by adhesively bonding a glass-fiber reinforced polymer (GFRP) plate to one of the flanges. The model captures shear deformation effects and partial interaction between the steel and GFRP owing to the relative flexibility of the adhesive. A general closed form solution is first developed for the governing coupled system of differential equations. The solution is then used to formulate mechanics-based shape functions and develop a finite element with superior convergence characteristics. The model is used to investigate the response of multi-span continuous beams, determine the strength gained by GFRP strengthening, and quantify shear deformation effects on the response of strengthened beams. A technique capturing partial interaction effects is devised to characterize the flexural strength of Class 3 strengthened beams. A classification limit for strengthened Class 3 sections is also proposed within the framework of the Canadian Standard CAN-CSA S16 (2014).

2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.


2017 ◽  
Vol 753 ◽  
pp. 3-7
Author(s):  
Jae Ho Lee ◽  
Sun Hee Kim ◽  
Won Chang Choi ◽  
Soon Jong Yoon

Recently, glass fiber reinforced polymer plastic (GFRP) pipes are widely used in the water-supply system because of their advantages such as light-weight, corrosion resistance, etc. In previous study, we present the equation to predict stiffness factor (EI) of GFRP pipe with two tape-winding FRP layers and polymer mortar layer in between two FRP layers. As a result, it was able to predict in the range of -3% to +7%. In addition to previous study, we attempted to predict stiffness factor (EI) of GFRP pipe by the finite element method (MIDAS Civil 2016). From the study it was found that the finite element method can be used to predict the pipe stiffness of GFRP pipe.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Gabriel Mansour ◽  
Panagiotis Kyratsis ◽  
Apostolos Korlos ◽  
Dimitrios Tzetzis

There are numerous engineering applications where Glass Fiber Reinforced Polymer (GFRP) composite tubes are utilized, such as desalination plants, power transmission systems, and paper mill, as well as marine, industries. Some type of machining is required for those various applications either for joining or fitting procedures. Machining of GFRP has certain difficulties that may damage the tube itself because of fiber delamination and pull out, as well as matrix deboning. Additionally, short machining tool life may be encountered while the formation of powder like chips maybe relatively hazardous. The present paper investigates the effect of process parameters for surface roughness of glass fiber-reinforced polymer composite pipes manufactured using the filament winding process. Experiments were conducted based on the high-speed turning Computer Numerical Control (CNC) machine using Poly-Crystalline Diamond (PCD) tool. The process parameters considered were cutting speed, feed, and depth of cut. Mathematical models for the surface roughness were developed based on the experimental results, and Analysis of Variance (ANOVA) has been performed with a confidence level of 95% for validation of the models.


Author(s):  
Priyadarsini Morampudi ◽  
Kiran Kumar Namala ◽  
Yeshwanth Kumar Gajjela ◽  
Majjiga Barath ◽  
Ganaparthy Prudhvi

Sign in / Sign up

Export Citation Format

Share Document