Simulation Behavior of Flexure in Reinforced Concrete Beam with Opening Reinforced with Glass Fiber Reinforced Polymer (GFRP)

2016 ◽  
Vol 857 ◽  
pp. 421-425
Author(s):  
Saif M. Thabet ◽  
S.A. Osman

This paper presents an investigation into the flexural behaviour of reinforced concrete beam with opening reinforced with two different materials i.e., steel and Glass Fiber Reinforced Polymer (GFRP). Comparison study between the two different materials were carried out and presented in this study through non-linear Finite Element Method (FEM) using the commercial ABAQUS 6.10 software package. The performance of the opening beam reinforced with GFRP is influenced by several key parameters. Simulation analyses were carried out to determine the behavior of beam with opening subjected to monotonic loading. The main parameters considered in this study are size of opening and reinforcement diameter. The results show that GFRP give 23%-29% more ductility than steel reinforcement. The result also shows when the size of opening change from 200mm to 150mm or from 150mm to 100mm the ultimate load capacity increase by 15%. In general, good agreement between the Finite Element (FE) simulation and the available experimental result has been obtained.

2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2019 ◽  
Vol 46 (4) ◽  
pp. 338-351
Author(s):  
Phe Van Pham ◽  
Magdi Mohareb ◽  
Amir Fam

The present study investigates the flexural behaviour of steel beams strengthened by adhesively bonding a glass-fiber reinforced polymer (GFRP) plate to one of the flanges. The model captures shear deformation effects and partial interaction between the steel and GFRP owing to the relative flexibility of the adhesive. A general closed form solution is first developed for the governing coupled system of differential equations. The solution is then used to formulate mechanics-based shape functions and develop a finite element with superior convergence characteristics. The model is used to investigate the response of multi-span continuous beams, determine the strength gained by GFRP strengthening, and quantify shear deformation effects on the response of strengthened beams. A technique capturing partial interaction effects is devised to characterize the flexural strength of Class 3 strengthened beams. A classification limit for strengthened Class 3 sections is also proposed within the framework of the Canadian Standard CAN-CSA S16 (2014).


Sign in / Sign up

Export Citation Format

Share Document