Origins of dinosaur bonebeds in the Cretaceous of Alberta, Canada

2015 ◽  
Vol 52 (8) ◽  
pp. 655-681 ◽  
Author(s):  
David A. Eberth

Upper Cretaceous dinosaur bonebeds are common in Alberta, Canada, and have attracted continuous scientific attention since the 1960s. Since its inception, the Royal Tyrrell Museum of Palaeontology has documented the presence of hundreds of these sites and has been involved directly in the scientific study of many tens. Because many of these bonebeds have been used to address questions about the paleobiology and paleoecology of dinosaurs, questions have arisen about bonebed origins and preservation in the Cretaceous of Alberta. This study of 260 bonebeds delineates broad paleoenvironmental settings and associations, and taphonomic signatures of assemblages as a first step in assessing patterns of dinosaur bonebed origins in the Upper Cretaceous of Alberta. Bonebeds are known predominantly from the Belly River Group and the Horseshoe Canyon, lower St. Mary River, Wapiti, and Scollard formations. In these units, bonebeds are mostly associated with river channel and alluvial wetland settings that were influenced by a subtropical to warm-temperate, monsoonal climate. Most bonebeds formed in response to flooding events capable of killing dinosaurs, reworking and modifying skeletal remains, and burying taphocoenoses. The “coastal-plain-flooding hypothesis,” proposed in 2005, suggested that many bonebeds in the Dinosaur Park Formation formed in response to the effects of recurring coastal-plain floods that submerged vast areas of ancient southern Alberta on a seasonal basis. It remains the best mechanism to explain how many of the bonebeds were formed and preserved at Dinosaur Provincial Park, and here, is proposed as the mechanism that best explains bonebed origins in other Upper Cretaceous formations across central and southern Alberta.

1995 ◽  
Vol 69 (6) ◽  
pp. 1191-1194 ◽  
Author(s):  
Clive E. Coy

Spiral coprolites from the Upper Cretaceous of North America are poorly known. Enterospirae (fossilized intestines) reported from the Upper Cretaceous Niobrara Formation of western Kansas (Stewart, 1978) were disputed by McAllister (1985), who felt they represented spiral coprolites similar to those described from the Permian by Neumayer (1904). Previously described coprolites from the Upper Cretaceous of Alberta are small, unstructured, ellipsoidal forms thought to derive from a crocodilian or terrestrial, carnivorous reptile of necrophagic or piscivorous habits (Waldman, 1970; Waldman and Hopkins, 1970).


2020 ◽  
Vol 57 (10) ◽  
pp. 1220-1237 ◽  
Author(s):  
David A. Eberth ◽  
Sandra L. Kamo

The non-marine Horseshoe Canyon Formation (HCFm, southern Alberta) yields taxonomically diverse, late Campanian to middle Maastrichtian dinosaur assemblages that play a central role in documenting dinosaur evolution, paleoecology, and paleobiogeography leading up to the end-Cretaceous extinction. Here, we present high-precision U–Pb CA–ID–TIMS ages and the first calibrated chronostratigraphy for the HCFm using zircon grains from (1) four HCFm bentonites distributed through 129 m of section, (2) one bentonite from the underlying Bearpaw Formation, and (3) a bentonite from the overlying Battle Formation that we dated previously. In its type area, the HCFm ranges in age from 73.1–68.0 Ma. Significant paleoenvironmental and climatic changes are recorded in the formation, including (1) a transition from a warm-and-wet deltaic setting to a cooler, seasonally wet-dry coastal plain at 71.5 Ma, (2) maximum transgression of the Drumheller Marine Tongue at 70.896 ± 0.048 Ma, and (3) transition to a warm-wet alluvial plain at 69.6 Ma. The HCFm’s three mega-herbivore dinosaur assemblage zones track these changes and are calibrated as follows: Edmontosaurus regalis – Pachyrhinosaurus canadensis zone, 73.1–71.5 Ma; Hypacrosaurus altispinus – Saurolophus osborni zone, 71.5–69.6 Ma; and Eotriceratops xerinsularis zone, 69.6–68.2 Ma. The Albertosaurus Bonebed — a monodominant assemblage of tyrannosaurids in the Tolman Member — is assessed an age of 70.1 Ma. The unusual triceratopsin, Eotriceratops xerinsularis, from the Carbon Member, is assessed an age of 68.8 Ma. This chronostratigraphy is useful for refining correlations with dinosaur-bearing upper Campanian–middle Maastrichtian units in Alberta and elsewhere in North America.


1999 ◽  
Vol 73 (3) ◽  
pp. 494-503 ◽  
Author(s):  
Neil R. Beavan ◽  
Anthony P. Russell

The change in depositional environments observed in the Cretaceous (Upper Campanian) strata in the region of Dinosaur Provincial Park, Alberta, from the proximal coastal plain deposits of the Oldman Formation to the lowland coastal plain deposits of the Dinosaur Park Formation, reveals an associated change in faunal composition. An assemblage collected from a microvertebrate site in the paralic deposits of the Lethbridge Coal Zone (uppermost Dinosaur Park Formation) reflects an increasing marine influence. Elasmobranch (sharks and rays) remains are the most abundant, both in terms of number of overall taxa and number of elements, and they are the best-preserved specimens. However, several brackish-water-tolerant osteichthyan taxa, and four reptile taxa (two marine and two terrestrial), were also recovered, although they exhibited evidence of extensive taphonomic reworking.The elasmobranch fauna collected from the Dinosaur Park locality is uncommon for vertebrate microfossil assemblages in the Dinosaur Park Formation of Alberta and in equivalent beds in Montana. Seven of the 10 taxa collected from this site [Cretorectolobus olsoni Case, 1978; Eucrossorhinus microcuspidatus Case, 1978; Odontaspis aculeatus (Cappetta and Case, 1975); Archaeolamna kopingensis judithensis Siverson, 1992; Protoplatyrhina renae Case, 1978; Ischyrhiza mira Leidy, 1856; and Ptychotrygon blainensis Case, 1978] are recorded for the first time from the uppermost section of the Judith River Group in Alberta; Carcharias steineri (Case, 1987), represents the first occurrence within the upper Judith River Group from either Alberta or Montana.


2020 ◽  
Vol 39 (1) ◽  
pp. 184-218
Author(s):  
BRIGID E. CHRISTISON ◽  
DARREN H. TANKE ◽  
JORDAN C. MALLON

The early collecting history of dinosaurs and other fossil vertebrates in Western Canada during the 1870s and 1880s is poorly documented. Initial finds were made by the British North American Boundary Commission and the Geological Survey of Canada in modern Saskatchewan and Alberta but, beyond a few well-publicized examples, little is known about precisely what was found and where. Much of the collected material is now housed in the collections of the Canadian Museum of Nature in Gatineau, Quebec, and a recent survey of these historic finds allows for the first comprehensive narrative regarding their identity and procurement. The collection is heavily biased towards vertebral centra and phalanges, reflective of both taphonomic and collecting biases. Given current understanding of Upper Cretaceous assemblages of North America, ornithomimids and small theropods are overrepresented, whereas ceratopsids and ankylosaurs are underrepresented. Fossils from the Belly River Group are best represented, after repeated visits to the areas of present-day Dinosaur Provincial Park and Ross Coulee near Irvine, Alberta. Taxonomic identification of the material has yielded numerous first Canadian occurrences, in addition to some first global occurrences. The latter include the first ever occurrences of Caenagnathidae (1884) and Thescelosauridae (1889). The Upper Cretaceous fossil record of Western Canada is among the richest in the world, and has been thoroughly studied over the last century. These fossils have informed our understanding of dinosaur behaviour, taphonomy, ecology, diversity dynamics, and extinction, among other aspects. But, like the animals themselves, the story of Canada's dinosaur-hunting legacy had humble beginnings—a story that has not been fully revealed before now.


2009 ◽  
Vol 46 (11) ◽  
pp. 791-800 ◽  
Author(s):  
David C. Evans ◽  
Rebecca Bavington ◽  
Nicolás E. Campione

The lambeosaurine hadrosaurid Parasaurolophus is known from rare occurrences in Campanian deposits of western North America. A previously undescribed large hadrosaurid braincase from the Dinosaur Park Formation (Alberta, Canada) is assigned to the genus Parasaurolophus on the basis of several derived characters associated with the frontal–nasal articulation at the base of the crest. This identification is supported by two separate phylogenetic analyses, in which the specimen clusters with other more completely known Parasaurolophus exemplars. If correctly identified, the specimen represents the third and largest cranial specimen of the genus from the Late Cretaceous of Alberta. The specimen occurs in the same deposits as the holotype specimen of Parasaurolophus walkeri and may represent a late ontogenetic stage of this taxon. As opposed to a small frontal dome in the holotype of P. walkeri , the external contribution of the frontal to the skull roof is obliterated in the new specimen. If these hypothesized ontogenetic changes in the skull roof correlate with the size and posterodorsal development of the crest, as in other lambeosaurines, it suggests that the crest had not reached its full expression in the holotype. When placed into a detailed biostratigraphic context for the first time, the limited Parasaurolophus material from the Belly River Group is distributed in the lower half of the Dinosaur Park Formation at Dinosaur Provincial Park. This suggests that Parasaurolophus may be associated with the lower Centrosaurus – Corythosaurus assemblage zone and may have preferred more inland environments than other hadrosaurids, such as Lambeosaurus and Prosaurolophus .


2015 ◽  
Vol 52 (8) ◽  
pp. 569-580 ◽  
Author(s):  
James D. Gardner

The frog Tyrrellbatrachus brinkmani, gen. et sp. nov., is described on the basis of seven incomplete maxillae from vertebrate microfossil localities in the Upper Cretaceous (Campanian) Dinosaur Park Formation, in the Dinosaur Provincial Park area, southeastern Alberta, Canada. The maxillae are distinctive in a unique suite of features related to size, shape, and proportions of the bone, texture of the labial surface, form of the surface for inferred contact with the squamosal, form of the lamina horizontalis and the processus pterygoideus, relative depth of the crista dentalis, and in being edentulous (i.e., lacking teeth). The higher level affinities of Tyrrellbatrachus are uncertain, although certain features exclude it from several known families; for example, the presence of a processus pterygoideus excludes it from Gobiatidae (Late Cretaceous, Asia), whereas the presence of a crista dentalis and of a relatively unreduced pars facialis exclude it from Pipidae (Cretaceous–Recent, Africa and South America). The lack of teeth in Tyrrellbatrachus is notable because although tooth loss is widespread among extant anurans and has arisen independently multiple times, it has rarely been documented among Mesozoic anurans. Comparisons with the only other edentulous anuran from the Mesozoic of the Northern Hemisphere, namely Theatonius (late Campanian – late Maastrichtian, western USA), reveal no compelling similarities to support a close relationship between the two genera. Those taxa represent an early (Campanian) instance of independent tooth loss in anurans and, potentially, the oldest record of tooth loss in nonpipid anurans.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5194
Author(s):  
James A. Campbell ◽  
Michael J. Ryan ◽  
Claudia J. Schröder-Adams ◽  
David C. Evans ◽  
Robert B. Holmes

Chasmosaurine ceratopsids are well documented from the Upper Cretaceous (Campanian) Dinosaur Park Formation (DPF) of southern Alberta and Saskatchewan, and includeChasmosaurus belli,Chasmosaurus russelli,Mercuriceratops gemini,Vagaceratops irvinensis, and material possibly referable toSpiclypeus shipporum.In this study, we describe three recently prepared chasmosaurine skulls (CMN 8802, CMN 34829, and TMP 2011.053.0046) from the DPF, and age-equivalent sediments, of Alberta. CMN 8802 and CMN 34829 are both referred toChasmosaurussp. based on the size and shape of the preserved parietal fenestrae. TMP 2011.053.0046 is referred toVagaceratopssp. based on the position and orientation of its preserved epiparietals. Each skull is characterized by the presence of an accessory fenestra in either the squamosal (CMN 8802 and TMP 2011.053.0046) or parietal (CMN 34829). Such fenestrae are common occurrences in chasmosaurine squamosals, but are rare in the parietal portion of the frill. The origin of the fenestrae in these three specimens is unknown, but they do not appear to exhibit evidence of pathology, as has been previously interpreted for the accessory fenestrae in most other chasmosaurine frills. These three skulls contribute to a better understanding of the morphological variation, and geographic and stratigraphic distribution, of chasmosaurines within the DPF and age-equivalent sediments in Western Canada.


Sign in / Sign up

Export Citation Format

Share Document