A new conceptual framework for evaluating the early ontogeny phase of recruitment processes among marine fish species

2012 ◽  
Vol 69 (12) ◽  
pp. 2112-2129 ◽  
Author(s):  
Miriam J. Doyle ◽  
Kathryn L. Mier

For Gulf of Alaska (GOA) fish populations, ordination by principal component analysis of a matrix of species by early life history and ecological traits resulted in distribution of species along three primary gradients. These are synonymous with phenology of egg and larval production, quantity of production, and ubiquity of larvae, the latter representing temporal and spatial extent of distribution in the pelagic environment. GOA species were assigned to categories that shared similar positions in ordination space relative to the three primary gradients. From this comparative analysis, a conceptual framework is proposed for species’ early life histories representing trade-offs in adaptation to prevailing environmental conditions and associated vulnerability and resilience factors that may modulate species’ recruitment responses to environmental variability. The utility of this framework for evaluating response to environmental forcing was supported by the analysis of a 27-year time series of GOA late spring larval fish abundance. The hypothesis for this ongoing research is that we can utilize similarities in reproductive and early life history characteristics among species to identify (i) ecologically determined species groups that are predisposed to respond to environmental forcing in similar ways and (ii) plausible environmental predictors of recruitment variation attributable to aspects of early life history.

2018 ◽  
Vol 69 (6) ◽  
pp. 942 ◽  
Author(s):  
Daisuke Goto ◽  
Martin J. Hamel ◽  
Mark A. Pegg ◽  
Jeremy J. Hammen ◽  
Matthew L. Rugg ◽  
...  

Environmental regimes set the timing and location of early life-history events of migratory species with synchronised reproduction. However, modified habitats in human-dominated landscapes may amplify uncertainty in predicting recruitment pulses, impeding efforts to restore habitats invaluable to endemic species. The present study assessed how environmental and spawner influences modulate recruitment variability and persistence of the Missouri River shovelnose sturgeon (Scaphirhynchus platorynchus) under modified seasonal spawning and nursery habitat conditions. Using a spatially explicit individual-based biophysical model, spawning cycle, early life-history processes (dispersal, energetics and survival) and prey production were simulated under incrementally perturbed flow (from –10 to –30%) and temperature (+1 and +2°C) regimes over 50 years. Simulated flow reduction and warming synergistically contracted spring spawning habitats (by up to 51%) and periods (by 19%). Under these conditions, fewer mature females entered a reproductive cycle, and more females skipped spawning, reducing spawning biomass by 20–50%. Many spawners migrated further to avoid increasingly unfavourable habitats, intensifying local density dependence in larval stages and, in turn, increasing size-dependent predation mortality. Diminished egg production (by 20–97%) and weakened recruitment pulses (by 46–95%) ultimately reduced population size by 21–74%. These simulations illustrate that environmentally amplified maternal influences on early life histories can lower sturgeon population stability and resilience to ever-increasing perturbations.


2021 ◽  
Author(s):  
◽  
Conor Stewart Bruce Neilson

<p>A primary goal of ecology is to identify the factors underlying recruitment variability, and how they may shape population dynamics. Recruitment is driven by the input of new individuals into a population. However, these individuals often show high diversity in phenotypic traits and life histories, and the consequences of this variation are poorly understood. Phenotypic variation is widespread among the early life stages of fish, and this variation may be influenced by events occurring across multiple life stages. While many studies have investigated phenotypic variation and its effect on population dynamics, comparatively few studies use an integrated approach that evaluates patterns and processes across multiple life history stages. Here I focus on a native amphidromous fish, Galaxias maculatus, and I explore patterns and consequences of phenotypic variation during larval stages, migratory stages, and post-settlement stages of this fish.  I explore variability in phenotypes and early life history traits of G. maculatus through both space and time. I use metrics derived from body size and otolith-based demographic reconstructions to quantify potentially important early life history traits. I found that cohorts of juvenile fish sampled later in the year were comprised of individuals that were older, smaller, and grew more slowly relative to fish sampled earlier in the year. I also found that two sampled sites (the Hutt River and the Wainuiomata River) showed different temporal trends, despite their close geographical proximity.  I then investigated whether phenotype was related to mortality. I used otolith-based traits to characterise larval ‘quality’ for individual fish. I then calculated the average larval quality for discrete cohorts of fish, and used catch-curve analysis to estimate mortality rates for these cohorts. I investigated the overall relationship between quality and mortality, and compared the trend between two sites. My results indicate that phenotype and mortality were not significantly correlated. However, this inference may be limited by low statistical power; the non-significant trends suggest that the relationship might be negative (i.e., larvae of higher quality tend to have lower rates of mortality). This trend is typical of systems where population expansion is limited by food rather than predators.  I then investigated whether phenotypic traits in the juvenile cohorts were correlated with traits in adult cohorts. I resampled the focal populations ~6 months after sampling the juvenile stages (i.e., targeting fish from sampled cohorts that had survived to adulthood), and I used data from otoliths to reconstruct life history traits (hatch dates and growth histories). I compared adult life history traits to the traits of discrete juvenile cohorts.  My results suggest that fish that survived to adulthood had comparatively slower growth rates (reconstructed for a period of larval/juvenile growth) relative to the sampled juvenile cohorts (where growth rate was estimated for the same period in their life history). I also found that the distributions of hatch dates varied between sites. Fish that survived to adulthood at one site hatched later in the breeding season, while adult stages from the other site had hatch dates that were distributed across the entire breeding season. Both hatch date and growth rate are likely linked to fitness, and their interaction may have influenced patterns of survival to adulthood. These results provide evidence for carry-over effects of larval phenotype on juvenile success  Collectively my thesis emphasises the importance of phenotype and life history variability in studies of recruitment. It also highlights the importance of spatial scale, and how biological patterns may differ between geographically close systems. Some of the general inferences from my study may extend to other migratory Galaxiid species, and perhaps more generally, to many species with extensive larval dispersal. Finally, my work highlights potentially important interactions between phenotypes, life histories, and mortality, which can ultimately shape recruitment, and the dynamics of populations.</p>


2021 ◽  
Author(s):  
◽  
Conor Stewart Bruce Neilson

<p>A primary goal of ecology is to identify the factors underlying recruitment variability, and how they may shape population dynamics. Recruitment is driven by the input of new individuals into a population. However, these individuals often show high diversity in phenotypic traits and life histories, and the consequences of this variation are poorly understood. Phenotypic variation is widespread among the early life stages of fish, and this variation may be influenced by events occurring across multiple life stages. While many studies have investigated phenotypic variation and its effect on population dynamics, comparatively few studies use an integrated approach that evaluates patterns and processes across multiple life history stages. Here I focus on a native amphidromous fish, Galaxias maculatus, and I explore patterns and consequences of phenotypic variation during larval stages, migratory stages, and post-settlement stages of this fish.  I explore variability in phenotypes and early life history traits of G. maculatus through both space and time. I use metrics derived from body size and otolith-based demographic reconstructions to quantify potentially important early life history traits. I found that cohorts of juvenile fish sampled later in the year were comprised of individuals that were older, smaller, and grew more slowly relative to fish sampled earlier in the year. I also found that two sampled sites (the Hutt River and the Wainuiomata River) showed different temporal trends, despite their close geographical proximity.  I then investigated whether phenotype was related to mortality. I used otolith-based traits to characterise larval ‘quality’ for individual fish. I then calculated the average larval quality for discrete cohorts of fish, and used catch-curve analysis to estimate mortality rates for these cohorts. I investigated the overall relationship between quality and mortality, and compared the trend between two sites. My results indicate that phenotype and mortality were not significantly correlated. However, this inference may be limited by low statistical power; the non-significant trends suggest that the relationship might be negative (i.e., larvae of higher quality tend to have lower rates of mortality). This trend is typical of systems where population expansion is limited by food rather than predators.  I then investigated whether phenotypic traits in the juvenile cohorts were correlated with traits in adult cohorts. I resampled the focal populations ~6 months after sampling the juvenile stages (i.e., targeting fish from sampled cohorts that had survived to adulthood), and I used data from otoliths to reconstruct life history traits (hatch dates and growth histories). I compared adult life history traits to the traits of discrete juvenile cohorts.  My results suggest that fish that survived to adulthood had comparatively slower growth rates (reconstructed for a period of larval/juvenile growth) relative to the sampled juvenile cohorts (where growth rate was estimated for the same period in their life history). I also found that the distributions of hatch dates varied between sites. Fish that survived to adulthood at one site hatched later in the breeding season, while adult stages from the other site had hatch dates that were distributed across the entire breeding season. Both hatch date and growth rate are likely linked to fitness, and their interaction may have influenced patterns of survival to adulthood. These results provide evidence for carry-over effects of larval phenotype on juvenile success  Collectively my thesis emphasises the importance of phenotype and life history variability in studies of recruitment. It also highlights the importance of spatial scale, and how biological patterns may differ between geographically close systems. Some of the general inferences from my study may extend to other migratory Galaxiid species, and perhaps more generally, to many species with extensive larval dispersal. Finally, my work highlights potentially important interactions between phenotypes, life histories, and mortality, which can ultimately shape recruitment, and the dynamics of populations.</p>


2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.


Sign in / Sign up

Export Citation Format

Share Document