Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design

2013 ◽  
Vol 43 (10) ◽  
pp. 972-978 ◽  
Author(s):  
Jacob S. Fraser ◽  
Hong S. He ◽  
Stephen R. Shifley ◽  
Wen J. Wang ◽  
Frank R. Thompson

Forest landscape models (FLMs) are an important tool for assessing the long-term cumulative effects of harvest over large spatial extents. However, they have not been commonly used to guide forest management planning and on-the-ground operations. This is largely because FLMs track relatively simplistic vegetation information such as age cohort presence/absence, forest type, and biomass that are incompatible with tree density and size on which most harvest prescriptions are based. We describe and demonstrate the newly developed harvest module of the LANDIS PRO FLM, which tracks density, size, basal area, and stocking by species age cohorts for each site (cell). With this quantitative information, the module can simulate basal area controlled harvest, stocking-level controlled harvest, and group selection harvest. Through user-specified harvest year (frequency), stand ranking, and species and age preference, the new module can simulate a wide variety of harvest prescriptions such as thinning from above and below, shelterwood, clear-cutting, and group selection. We applied the LANDIS PRO harvest module to a large (17 000 km2) central hardwood forest landscape in Missouri. The simulated harvest prescriptions produced realistic stand-scale results when plotted on Gingrich stocking charts. The harvest module improves on previous versions by allowing partial treatment of individual age-classes within a cell and reporting results in metrics commonly used in stand-scale silviculture. It provides a closer link between landscape-scale simulation methods and stand-scale management.

2012 ◽  
Author(s):  
◽  
Wenjuan Wang

Forest landscape models (FLMs) have increasingly become important tools for exploring forest landscape changes by predicting forest vegetation dynamics over large spatial scales. However, two challenges confronting FLMs have persisted: how to simulate fine, site-scale processes while making large-scale (landscape and regional) simulation feasible, and how to fully take advantage of extensive U.S. Forest Service Inventory and Analysis (FIA) data to initialize and constraint model parameters. In this dissertation, first, a new FLM, LANDIS PRO was developed. In LANDIS PRO, forest succession and dynamics are simulated by incorporating species-, stand-, and landscape-scale processes by tracking number of trees by species age cohort. Because stand-scale resource competition is achieved by implementing rather than simulating the emergent properties of stand development, LANDIS PRO is computationally efficient, which makes large-scale simulation feasible. Since model parameters and simulation results are comparatively straightforward to forest inventory data, current intensive forest inventory data can be directly applied for model initialization and to constrain model parameters. Validation of FLMs is essential to ensure users’ confidence in model predictions and achieve reliable management decision making. To date, validation of FLMs has been limited due to lack of suitable data. However, recent advances in FLMs, together with increasingly available spatiotemporal data make FLM validation feasible. In this dissertation, second, I proposed a framework for validating forest landscape projections from LANDIS PRO using Forest Inventory Analysis (FIA) data. The proposed framework incorporated data assimilation techniques to constrain model parameters and the initial state of the landscape by verifying the initialized landscape and iteratively calibrating the model parameters. The model predictions were rigorously validated against independent FIA data at multiple scales, and the long-term natural successional pattern was also verified against empirical studies. Results showed model predictions were able to capture much of the variation overtime in species basal area and tree density at stand-, landtype- , and landscape-scales. Subsequent long-term predictions of natural succession patterns were consistent with expected changes in tree species density of oak-dominated forests in the absence of disturbance. Lastly, I used LANDIS PRO, a forest landscape model that includes stand-scale species density and basal area to evaluate the potential landscape-scale effects of alternative harvest methods (thinning, clearcutting and group selection) on oak decline mitigation. Projections indicated that forest harvesting can be effective in mitigating oak decline. Group selection and clearcutting were the most effective methods in the management of oak decline in the short-term (20 years) and mid-term (50 years), respectively. However, in the long-run (100 years), there was no significant difference predicted among the three methods.


2016 ◽  
Vol 32 (7) ◽  
pp. 1347-1363 ◽  
Author(s):  
Jiangtao Xiao ◽  
Yu Liang ◽  
Hong S. He ◽  
Jonathan R. Thompson ◽  
Wen J. Wang ◽  
...  

1986 ◽  
Vol 16 (5) ◽  
pp. 885-891 ◽  
Author(s):  
Matthew J. Kelty

Two forest stands, composed primarily of northern red oak (Quercusrubra L.), red maple (Acerrubrum L.), and eastern hemlock (Tsugacanadensis (L.) Carr.), were studied by stand-reconstruction techniques to determine the pattern of development of canopy structure. One stand had originated following clear-cutting 87 years ago; the other, following catastrophic windthrow 44 years ago. Juvenile height growth of the hardwood species was much greater than that of hemlock and a stratified canopy developed by age 30 years, with hardwoods forming an overstory canopy above hemlock. Hemlocks maintained overstory positions only if they were 3 m or more in height immediately following canopy disturbance. In the older stand, hardwood height growth was about twice that of the tallest understory hemlocks during the first 30 years. The hardwood overstory slowed after that and grew at the same rate as the tallest understory hemlocks, which maintained a constant rate of height growth, and a constant to accelerating rate of basal area growth for much of the 87-year measurement period. The height growth of the tallest understory hemlocks was apparently limited in part by breakage of terminal shoots, caused by abrasion against branches of overstory hardwood crowns.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


2020 ◽  
Vol 38 ◽  
pp. 101-130
Author(s):  
Jennie Sandström ◽  
Mattias Edman ◽  
Bengt Gunnar Jonsson

Almost all forests in Sweden are managed and only a small fraction are considered natural. One exception is low productive forests where, due to their limited economical value, natural dynamics still dominate. One example is the Scots pine (Pinus sylvestris L.) forests occurring on rocky and nutrient-poor hilltops. Although these forests represent a regionally common forest type with a high degree of naturalness, their dynamics, structure and history are poorly known. We investigated the structure, human impact and fire history in eight rocky pine forests in the High Coast Area in eastern Sweden, initially identified as good representatives of this forest type. This was done by sampling and measuring tree sizes, -ages, fire-scarred trees, as well as dead wood volumes and quality along three transects at each site. The structure was diverse with a sparse layer of trees (basal area 9 m2 and 640 trees larger than 10 cm ha-1) in various sizes and ages; 13 trees ha-1 were more than 300 years old. Dead wood (DW), snags and logs in all stages of decay, was present and although the actual DW (pine) volume (4.4 m3 ha-1) and number of units (53 ha-1) was low, the DW share of total wood volume was 18% on average. Dead wood can be present for several centuries after death; we found examples of both snags and logs that had been dead more than 300 years. Frequent fires have occurred, with an average cycle of 40 years between fires. Most fires occurred between 1500-1900 and many of them (13) during the 1600s. However, fires were probably small since most fire years were only represented at one site and often only in one or a few samples. The rocky pine forests in the High Coast Area are representative of undisturbed forests with low human impact, exhibiting old-growth characteristics and are valuable habitats for organisms connected to sun-exposed DW. Management of protected rocky pine forests may well include small-scale restoration fires and the limited DW volumes should be protected.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 810
Author(s):  
Sebastian Palmas ◽  
Paulo C. Moreno ◽  
Wendel P. Cropper ◽  
Alicia Ortega ◽  
Salvador A. Gezan

Reliable information on stand dynamics and development is needed to improve management decisions on mixed forests, and essential tools for this purpose are forest growth and yield (G&Y) models. In this study, stand-level G&Y models were built for cohorts within the natural mixed second-growth Nothofagus-dominated forests in Chile. All currently available (but limited) data, consisting of a series of stratified temporary and permanent plots established in the complete range of this forest type, were used to fit and validate these models. Linear and nonlinear models were considered, where dominant stand age, number of trees, and the proportion of basal area of Nothofagus species resulted in significant predictors to project future values of stand basal area for the different cohorts (with R2 > 0.51 for the validation datasets). Mortality was successfully modeled (R2 = 0.79), based on a small set of permanent plots, using the concept of self-thinning with a proposed model defined by the idea that, as stands get closer to a maximum density, they experience higher levels of mortality. The evaluation of these models indicated that they adequately represent the current understanding of dynamics of basal area and mortality of Nothofagus and companion species in these forests. These are the first models fitted over a large geographical area that consider the dynamics of these mixed forests. It is suggested that the proposed models should constitute the main components of future implementations of G&Y model systems.


2020 ◽  
Vol 66 (5) ◽  
pp. 537-550
Author(s):  
Steen Magnussen ◽  
Anne-Sophie Stelzer ◽  
Gerald Kändler

Abstract Penalized splines have potential to decrease estimates of variance in forest inventories with a design-based population-level inference, and a model-based domain-level inference by decreasing the likelihood of a model misspecification. We provide examples with second-order (B2) B-splines and radial basis (RB) functions as extensions to a linear working model (WM). Bias was not prominent, yet greater with B2 and in particular with RB than with WM, and decreased with sample size. Important reductions in the variance of a population mean were achieved with both B2 and RB, but at the domain-level only with RB. The proposed regression estimator of variance generated estimates of variance being slightly smaller than the observed variance. A consistent and larger underestimation was seen with the popular difference estimator of variance. Study Implications: Forest inventories supported by light detection and range (LiDAR) data require—in the estimation phase—a model for linking LiDAR metrics to attributes of interest. Formulating a parametric model can be a challenge and unsatisfactory if the goodness of fit varies across the range of the attribute of interest. A semiparametric model provides more flexibility and lessens the chance of a model misspecification, albeit with the potential of overfitting. A penalty directed at reducing overfitting is required. A flexible semiparametric model is potentially also better suited for applications to small areas like stands than a parametric model. We demonstrate that important reductions in variance are indeed possible, but also that they depend on the form of the nonparametric part of the chosen model and the level of inference (population versus domains). With regard to practical application, reliable estimates of forest attributes at stand-level are of special interest within the scope of forest-management planning, as silvicultural treatments are always stand-oriented, at least with small-scale forestry under Central European conditions, and stand-related volume (basal area, tree density) belongs to the set of relevant parameters for management decisions regarding harvest and regeneration measures.


2020 ◽  
Vol 50 (7) ◽  
pp. 608-614
Author(s):  
Ronei Baldissera ◽  
Suiane Oliveira de Quadros ◽  
Gabriela Galeti ◽  
Everton Nei Lopes Rodrigues ◽  
Luan M.V. Lazzarotto ◽  
...  

Habitat loss is one of the main consequences of landscape transformation by humans. Monitoring biodiversity changes in areas under different management strategies is fundamental for species conservation. Our study is the first to assess the role of forest disturbance history on spider (Araneae) biodiversity in the westernmost portion of the Atlantic Forest. We analyzed taxonomic and functional aspects of spider assemblages in understories in a large forest fragment in southwestern Brazil. Spiders were sampled in five 30 m × 5 m plots over three seasons in three areas with different management histories: clear-cutting, selective logging, or native plots. We also characterized tree basal area, tree density, and canopy openness. The clear-cut plots showed more canopy openness and low habitat heterogeneity due to the high density of one pioneer native tree species. Forest structure in selective logging and native plots was similar. Spider richness, abundance, and functional richness were affected only by the season. Species composition also differed among the areas depending on the season. The abundance of web-building species was mainly associated with clear-cut areas in winter and spring. These results highlight the importance of natural regeneration in the Atlantic Forest after disturbance for the conservation of regional spider biodiversity.


Sign in / Sign up

Export Citation Format

Share Document