forest landscape model
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
María Suárez-Muñoz ◽  
Marco Mina ◽  
Pablo C. Salazar ◽  
Rafael M. Navarro-Cerrillo ◽  
José L. Quero ◽  
...  

The use of spatially interactive forest landscape models has increased in recent years. These models are valuable tools to assess our knowledge about the functioning and provisioning of ecosystems as well as essential allies when predicting future changes. However, developing the necessary inputs and preparing them for research studies require substantial initial investments in terms of time. Although model initialization and calibration often take the largest amount of modelers’ efforts, such processes are rarely reported thoroughly in application studies. Our study documents the process of calibrating and setting up an ecophysiologically based forest landscape model (LANDIS-II with PnET-Succession) in a biogeographical region where such a model has never been applied to date (southwestern Mediterranean mountains in Europe). We describe the methodological process necessary to produce the required spatial inputs expressing initial vegetation and site conditions. We test model behaviour on single-cell simulations and calibrate species parameters using local biomass estimations and literature information. Finally, we test how different initialization data—with and without shrub communities—influence the simulation of forest dynamics by applying the calibrated model at landscape level. Combination of plot-level data with vegetation maps allowed us to generate a detailed map of initial tree and shrub communities. Single-cell simulations revealed that the model was able to reproduce realistic biomass estimates and competitive effects for different forest types included in the landscape, as well as plausible monthly growth patterns of species growing in Mediterranean mountains. Our results highlight the importance of considering shrub communities in forest landscape models, as they influence the temporal dynamics of tree species. Besides, our results show that, in the absence of natural disturbances, harvesting or climate change, landscape-level simulations projected a general increase of biomass of several species over the next decades but with distinct spatio-temporal patterns due to competitive effects and landscape heterogeneity. Providing a step-by-step workflow to initialize and calibrate a forest landscape model, our study encourages new users to use such tools in forestry and climate change applications. Thus, we advocate for documenting initialization processes in a transparent and reproducible manner in forest landscape modelling.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Richard H. Odom ◽  
W. Mark Ford

Simulating long-term, landscape level changes in forest composition requires estimates of stand age to initialize succession models. Detailed stand ages are rarely available, and even general information on stand history often is lacking. We used data from USDA Forest Service Forest Inventory and Analysis (FIA) database to estimate broad age classes for a forested landscape to simulate changes in landscape composition and structure relative to climate change at Fort Drum, a 43,000 ha U.S. Army installation in northwestern New York. Using simple linear regression, we developed relationships between tree diameter and age for FIA site trees from the host and adjacent ecoregions and applied those relationships to forest stands at Fort Drum. We observed that approximately half of the variation in age was explained by diameter breast height (DBH) across all species studied (r2 = 0.42 for sugar maple Acer saccharum to 0.63 for white ash Fraxinus americana). We then used age-diameter relationships from published research on northern hardwood species to calibrate results from the FIA-based analysis. With predicted stand age, we used tree species life histories and environmental conditions represented by ecological site types to parameterize a stochastic forest landscape model (LANDIS-II) to spatially and temporally model successional changes in forest communities at Fort Drum. Forest stands modeled over 100 years without significant disturbance appeared to reflect expected patterns of increasing dominance by shade-tolerant mesophytic tree species such as sugar maple, red maple (Acer rubrum), and eastern hemlock (Tsuga canadensis) where soil moisture was sufficient. On drier sandy soils, eastern white pine (Pinus strobus), red pine (P. resinosa), northern red oak (Quercus rubra), and white oak (Q. alba) continued to be important components throughout the modeling period with no net loss at the landscape scale. Our results suggest that despite abundant precipitation and relatively low evapotranspiration rates for the region, low soil water holding capacity and fertility may be limiting factors for the spread of mesophytic species on excessively drained soils in the region. Increasing atmospheric temperatures projected for the region could alter moisture regimes for many coarse-textured soils providing a possible mechanism for expansion of xerophytic tree species.


2020 ◽  
Vol 8 ◽  
Author(s):  
Eric J. Gustafson ◽  
Brian R. Miranda ◽  
Anatoly Z. Shvidenko ◽  
Brian R. Sturtevant

Changes in CO2 concentration and climate are likely to alter disturbance regimes and competitive outcomes among tree species, which ultimately can result in shifts of species and biome boundaries. Such changes are already evident in high latitude forests, where waterlogged soils produced by topography, surficial geology, and permafrost are an important driver of forest dynamics. Predicting such effects under the novel conditions of the future requires models with direct and mechanistic links of abiotic drivers to growth and competition. We enhanced such a forest landscape model (PnET-Succession in LANDIS-II) to allow simulation of waterlogged soils and their effects on tree growth and competition. We formally tested how these modifications alter water balance on wetland and permafrost sites, and their effect on tree growth and competition. We applied the model to evaluate its promise for mechanistically simulating species range expansion and contraction under climate change across a latitudinal gradient in Siberian Russia. We found that higher emissions scenarios permitted range expansions that were quicker and allowed a greater diversity of invading species, especially at the highest latitudes, and that disturbance hastened range shifts by overcoming the natural inertia of established ecological communities. The primary driver of range advances to the north was altered hydrology related to thawing permafrost, followed by temperature effects on growth. Range contractions from the south (extirpations) were slower and less tied to emissions or latitude, and were driven by inability to compete with invaders, or disturbance. An important non-intuitive result was that some extant species were killed off by extreme cold events projected under climate change as greater weather extremes occurred over the next 30 years, and this had important effects on subsequent successional trajectories. The mechanistic linkages between climate and soil water dynamics in this forest landscape model produced tight links between climate inputs, physiology of vegetation, and soils at a monthly time step. The updated modeling system can produce high quality projections of climate impacts on forest species range shifts by accounting for the interacting effects of CO2 concentration, climate (including longer growing seasons), seed dispersal, disturbance, and soil hydrologic properties.


2020 ◽  
Vol 133 ◽  
pp. 104833
Author(s):  
Paul Schrum ◽  
Robert M. Scheller ◽  
Matthew J. Duveneck ◽  
Melissa S. Lucash

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 903
Author(s):  
Paola Ovando ◽  
Matthias Speich

We developed an uneven-aged forest economic decision-making framework that combines: (i) a size-structured matrix model, based on growth and mortality predictions of a dynamic process-based forest landscape model, (ii) an optimal control model that determines the dynamics of control and state variables, which in turn are defined by tree harvesting and forest stock, respectively, and (iii) a water yield function that depends on changes in the leaf area index (LAI), the latter being affected by forest management. This framework was used to simulate the effects of economic-driven harvesting decisions on water yields on a catchment of South-Western Swiss Alps when both timber and water benefits are considered. Water benefits are estimated as environmental prices considering current water demands for drinking, irrigation and hydropower production. We simulated optimal harvesting decisions given the initial forest structure at each 200 m × 200 m grid cells, a set of restrictions to harvesting, and specific species survival, recruitment and growth probabilities, all of which are affected by the stand’s LAI. We applied this model using different harvesting restriction levels over a period of 20 to 40-years, and accounting for single and joint timber and water benefits. The results suggested that at the environmental prices estimated at the catchment area, water benefits have a slight influence on harvesting decisions, but when water is accounted for, harvesting decisions would include more tree species and different diameter classes, which, in principle, is expected to favor more diverse forest structures.


Author(s):  
Chihiro Haga ◽  
Marimi Maeda ◽  
Wataru Hotta ◽  
Takahiro Inoue ◽  
Takanori Matsui ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 537-564 ◽  
Author(s):  
Matthias J. R. Speich ◽  
Massimiliano Zappa ◽  
Marc Scherstjanoi ◽  
Heike Lischke

Abstract. We present FORHYCS (FORests and HYdrology under Climate Change in Switzerland), a distributed ecohydrological model to assess the impact of climate change on water resources and forest dynamics. FORHYCS is based on the coupling of the hydrological model PREVAH and the forest landscape model TreeMig. In a coupled simulation, both original models are executed simultaneously and exchange information through shared variables. The simulated canopy structure is summarized by the leaf area index (LAI), which affects local water balance calculations. On the other hand, an annual drought index is obtained from daily simulated potential and actual transpiration. This drought index affects tree growth and mortality, as well as a species-specific tree height limitation. The effective rooting depth is simulated as a function of climate, soil, and simulated above-ground vegetation structure. Other interface variables include stomatal resistance and leaf phenology. Case study simulations with the model were performed in the Navizence catchment in the Swiss Central Alps, with a sharp elevational gradient and climatic conditions ranging from dry inner-alpine to high alpine. In a first experiment, the model was run for 500 years with different configurations. The results were compared against observations of vegetation properties from national forest inventories, remotely sensed LAI, and high-resolution canopy height maps from stereo aerial images. Two new metrics are proposed for a quantitative comparison of observed and simulated canopy structure. In a second experiment, the model was run for 130 years under climate change scenarios using both idealized temperature and precipitation change and meteorological forcing from downscaled GCM-RCM model chains. The first experiment showed that model configuration greatly influences simulated vegetation structure. In particular, simulations where height limitation was dependent on environmental stress showed a much better fit to canopy height observations. Spatial patterns of simulated LAI were more realistic than for uncoupled simulations of the forest landscape model, although some model deficiencies are still evident. Under idealized climate change scenarios, the effect of the coupling varied regionally, with the greatest effects on simulated streamflow (up to 60 mm yr−1 difference with respect to a simulation with static vegetation parameters) seen at the valley bottom and in regions currently above the treeline. This case study shows the importance of coupling hydrology and vegetation dynamics to simulate the impact of climate change on ecosystems. Nevertheless, it also highlights some challenges of ecohydrological modeling, such as the need to realistically simulate the plant response to increased CO2 concentrations and process uncertainty regarding future land cover changes.


2019 ◽  
Author(s):  
Matthias J. R. Speich ◽  
Massimiliano Zappa ◽  
Marc Scherstjanoi ◽  
Heike Lischke

Abstract. We present FORHYCS (FORests and HYdrology under Climate Change in Switzerland), a distributed ecohydrological model to assess the impact of climate change on water resources and forest dynamics. FORHYCS is based on the coupling of the hydrological model PREVAH and the forest landscape model TreeMig. In a coupled simulation, both original models are executed simultaneously and exchange information through shared variables. The simulated canopy structure is summarized by the leaf area index (LAI), which affects local water balance calculations. On the other hand, an annual drought index is obtained from daily simulated potential and actual transpiration. This drought index affects tree growth and mortality, as well as a species-specific tree height limitation. The effective rooting depth is simulated as a function of climate, soil and simulated above-ground vegetation structure. Other interface variables include stomatal resistance and leaf phenology. Case study simulations with the model were performed in the Navizence catchment in the Central Swiss Alps, with a sharp elevational gradient and climatic conditions ranging from dry inneralpine to high alpine. In a first experiment, the model was run for 500 years with different configurations. The results were compared against observations of vegetation properties from national forest inventories, remotely sensed LAI and high-resolution canopy height maps from stereo aerial images. Two new metrics are proposed for a quantitative comparison of observed and simulated canopy structure. In a second experiment, the model was run for 130 years under idealized climate change scenarios: daily temperature was increased by up to 6 K, and precipitation altered by 10 %, with a gradual change over 35 years. The first experiment showed that model configuration greatly influences simulated vegetation structure. In particular, simulations where height limitation was dependent on environmental stress showed a much better fit to canopy height observations. Spatial patterns of simulated LAI were more realistic than for uncoupled simulations of the forest landscape model, although some model deficiencies are still evident. Under idealized climate change scenarios, the effect of the coupling varied regionally, with the greatest effects on simulated streamflow (up to 40 mm y−1 difference with respect to a simulation with static vegetation parameters) seen at the valley bottom and in regions currently above the treeline. This case study shows the importance of coupling hydrology and vegetation dynamics to simulate the impact of climate change on ecosystems. Nevertheless, it also highlights some challenges of ecohydrological modelling, such as the need to realistically simulate plant response to increased CO2 concentrations, and process uncertainty regarding future land cover changes.


2019 ◽  
Vol 117 ◽  
pp. 1-13 ◽  
Author(s):  
Patrick F. McKenzie ◽  
Matthew J. Duveneck ◽  
Luca L. Morreale ◽  
Jonathan R. Thompson

Sign in / Sign up

Export Citation Format

Share Document