Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields

2018 ◽  
Vol 64 (3) ◽  
pp. 167-181 ◽  
Author(s):  
Lei Yang ◽  
Lanlan Tan ◽  
Fenghua Zhang ◽  
William Jeffrey Gale ◽  
Zhibo Cheng ◽  
...  

Salinized land in the China’s Xinjiang Region is being reclaimed for continuous cotton production. The specific objectives of this field study were (i) to compare bacterial composition and diversity in unfarmed (i.e., unreclaimed) and continuously (5, 10, 15, and 20 years) cropped soils and (ii) to explore correlations between soil properties and the bacterial communities identified by Illumina MiSeq sequencing. The results showed that bacterial species richness and diversity increased for 10–15 years and then declined when salinized land was reclaimed for cotton production. Proteobacteria and Firmicutes were the dominant phyla in unfarmed soil. Continuous cropping reduced the abundance of Firmicutes but increased that of Chloroflexi, Acidobacteria, and Actinobacteria. Cluster analyses showed that the greatest similarities in bacterial communities were between the 5- and 10-year treatments and between the 15- and 20-year treatments. Soil pH, electrical conductivity, alkali-hydrolyzable N, and available P were significantly correlated with bacterial community distribution. Overall, cotton production improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unfarmed soil. These positive effects began to decrease after 10–15 years of continuous cotton production.

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136946 ◽  
Author(s):  
Wu Xiong ◽  
Zhigang Li ◽  
Hongjun Liu ◽  
Chao Xue ◽  
Ruifu Zhang ◽  
...  

2019 ◽  
Vol 131 ◽  
pp. 01091
Author(s):  
Jie Hong ◽  
Yue Yang ◽  
Yi Gao ◽  
LianQuan Zhong ◽  
QuanMing Xu ◽  
...  

The variation of bacterial community in lettuce continuous cropping was determined by high throughput sequencing. During the continuous planting of lettuce, the richness and diversity of bacterial communities in the soil increased, and the ACE index and Chao index increased by 40.21 % and 36.91 %, respectively. The proportion of Actinobacteria, Chloroflexi, Firmicutes and Nitrospirae in the soil increased, while the abundance of Acidobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes and Proteobacteria gradually declined. And the abundance in the soil accounting for 1 % of the dominant bacterial genera increased to 11, among them, Anaerolinea, Bacillus, Nitrosomonas, and Xanthomonas etc became the dominant bacterium genus in the soil after lettuce continuous cropping. After the lettuce had been planted 8 times, the yield decreased by 21.20 % compared to the first harvest. Lettuce continuous cropping had an effect on bacterial community and lettuce yield to some extent.


2021 ◽  
Vol 9 (8) ◽  
pp. 1595
Author(s):  
Rui Wang ◽  
Miao Wang ◽  
Jing Wang ◽  
Yinghua Lin

Both habitats and seasons can determine the dynamics of microbial communities, but the relative importance of different habitats and seasonal changes in shaping the soil bacterial community structures on a small spatial scale in permafrost areas remains controversial. In this study, we explored the relative effect of four typical alpine meadow habitats (swamp wetland, swamp meadow, meadow and mature meadow) versus seasons on soil bacterial communities based on samples from the Qinghai-Tibetan Plateau in four months (March, May, July and September). The results showed that habitats, rather than seasons explained more variation of soil bacterial composition and structure. Environmental cofactors explained the greatest proportion of bacterial variation observed and can help elucidate the driving force of seasonal changes and habitats on bacterial communities. Soil temperature played the most important role in shaping bacterial beta diversities, followed by soil total nitrogen and pH. A group of microbial biomarkers, used as indicators of different months, were identified using random forest modeling, and for which relative abundance was shaped by different environmental factors. Furthermore, seasonality in bacterial co-occurrence patterns was observed. The data showed that co-occurrence relationships changed over months. The inter-taxa connections in May and July were more pronounced than that in March and September. Bryobacter, a genus of subgroup_22 affiliated to Acidobacteria, and Pseudonocardia belonging to Actinobacteria were observed as the keystone taxa in different months in the network. These results demonstrate that the bacterial community was clustered according to the seasonal mechanism, whereas the co-occurrence relationships changed over months, which indicated complex bacterial dynamics in a permafrost grassland on the eastern edge of Qinghai-Tibetan.


2021 ◽  
Author(s):  
Girish R Nair ◽  
Suresh S.S. Raja

Abstract Background: The multidirectional relationship between soil, its microbiota, and climate is crucial in modulating the bacterial community diversity and its survival in the terrestrial ecosystem. Therefore, it is imperative to understand the dynamics of soil bacterial communities thriving in geographical areas of varied climatic exposure. Results: The diversity of terrestrial soil bacterial communities thriving in four contrasting Köppen climatic zones of India was investigated for the first time using high-throughput sequencing. The results revealed that the bacterial species diversity, evenness and richness were highest in HSCZ (humid subtropical climatic zone). Firmicutes was the most abundant phylum in TWCZ (tropical wet climatic zone), ACZ (arid climatic zone), and HSCZ (humid subtropical climatic zone) while Proteobacteria in MCZ (Mountain climatic zone). The predominance of class Alphaproteobacteria, Actinobacteria with genera Bradyrhizobium, Chthoniobacter, and Mycobacterium, was observed in MCZ in contrast to class Bacilli with genera Bacillus and Paenibacillus in the rest of the zones. Correlation analysis showed that H’ (Shannon diversity) index, S (species richness), OTU abundance were positively correlated with moisture, TOC, K, MAP (mean annual precipitation) and negatively correlated with pH, Ca, N, B. Fe, P, Mg and MAT (mean annual temperature). Conclusion: This work mapped the occurrence and distribution of terrestrial soil bacterial communities in contrasting climatic zones that enabled us to assess the effect of climate in mentioned Köppen climatic zones on a taxonomic scale.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document