scholarly journals Nonlinear Rosseland thermal radiation and magnetic field effects on flow and heat transfer over a moving surface with variable thickness in a nanofluid

2017 ◽  
Vol 95 (3) ◽  
pp. 267-273 ◽  
Author(s):  
Mohamed S. Abdel-wahed

A numerical investigation has been done to study the impact of nonlinear magnetic field, nonlinear thermal radiation, variable thickness, and Brownian motion on flow and heat transfer characteristics (i.e., skin friction and surface heat flux) as a physical application. Moreover, the impact of these forces on the rate of cooling and the mechanical properties (i.e., hardness, ductility, …) of a surface that is cooled using nanofluid as a coolant is explored. The governing boundary layer equations describing the problem are transformed to ordinary differential equations using the similarity transformation method and are then solved numerically using the fourth-order Runge–Kutta method with shooting technique with the assistance of Mathematica program.

RSC Advances ◽  
2019 ◽  
Vol 9 (39) ◽  
pp. 22185-22197 ◽  
Author(s):  
Yeping Peng ◽  
Ali Sulaiman Alsagri ◽  
Masoud Afrand ◽  
R. Moradi

The impact of an axial magnetic field on the heat transfer and nanofluid flow among two horizontal coaxial tubes in the presence of thermal radiation was considered in this study.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Xidong Zhang ◽  
Hulin Huang

The prediction of electrically conducting fluid past a localized zone of applied magnetic field is the key for many practical applications. In this paper, the characteristics of flow and heat transfer (HI) for a liquid metal in a rectangular duct under a local magnetic field are investigated numerically using a three-dimensional model and the impact of some parameters, such as constrainment factor, κ, interaction parameter, N, and Reynolds number, Re, is also discussed. It is found that, in the range of Reynolds number 100 ≤ Re ≤ 900, the flow structures can be classified into the following four typical categories: no vortices, one pair of magnetic vortices, three pairs of vortices and vortex shedding. The simulation results indicate that the local heterogeneous magnetic field can enhance the wall-heat transfer and the maximum value of the overall increment of HI is about 13.6%. Moreover, the pressure drop penalty (ΔPpenalty) does not increasingly depend on the N for constant κ and Re. Thus, the high overall increment of HI can be obtained when the vortex shedding occurs.


Sign in / Sign up

Export Citation Format

Share Document