Nonlinear Thermal Radiation and Chemical Reaction Effects on the Flow and Heat Transfer of Sisko Nanofluid Over a Non-Isothermal Stretched Wedge

2018 ◽  
Vol 7 (1) ◽  
pp. 175-183 ◽  
Author(s):  
Dulal Pal ◽  
Gopinath Mandal
Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 962 ◽  
Author(s):  
Naveed Ahmed ◽  
Fitnat Saba ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
El-Sayed M. Sherif ◽  
...  

The boundary layer flow of sodium alginate ( NaAlg ) based ( Cu − CuO ) hybrid nanofluid, over a curved expanding surface, has been investigated. Heat and mass transport phenomena have also been analyzed. Moreover, the impacts of chemical reaction, magnetic field and nonlinear thermal radiation are also a part of this study. This arrangement has great practical relevance, especially in the polymer and chemical industries. We have extended the Bruggeman model to make it capable of capturing the thermal conductivity of ( Cu − CuO ) / NaAlg hybrid nanofluid. We have employed some suitable transformations to obtain the governing system of nonlinear ODEs. Runge − Kutta − Fehlberg algorithm, accompanied by a shooting technique, has been employed to solve the governing system numerically. The changes in the flow and heat transfer distribution, due to various parameters, have been captured and portrayed in the form of graphs. It has been found that the addition of the nanometer-sized materials, significantly boosts the thermal and heat transport properties of the host fluid, and these phenomena seem to be more prominent, in the case of ( Cu − CuO ) / NaAlg hybrid nanofluid.


2020 ◽  
Vol 17 (4) ◽  
pp. 1953-1962
Author(s):  
J. Suresh Goud ◽  
P. Srilatha ◽  
K. Thanesh Kumar ◽  
S. Devraj

Analysis has been conducted to analyze the effects of second order slip flow and heat transfer of Jeffrey nanofluid over a stretching sheet with non linear thermal radiation and chemical reaction. The effects of Brownian motion and thermophoresis occur in the transport equations. The velocity, temperature and nanoparticle concentration profiles are analyzed with respect to the involved parameters of interest namely Brownian motion parameters, thermophoresis parameter, magnetic parameter, radiation parameter, Prandtl number, Lewis number, chemical reaction parameter, and Deborah number, Convergence of the derived solutions was checked and the influence of embedded parameters was analyzed by plotting graphs. It was noticed that the velocity increases with an increase in the Deborah number. We further found that for fixed values of other parameters, numerical values of the skin friction coefficient, local Nusselt numbers and Sherwood numbers were computed and examined. A comparative study between the previous published and present results in a limiting sense is found in an excellent agreement.


2018 ◽  
Vol 22 (1) ◽  
pp. 91-114 ◽  
Author(s):  
B. J. Gireesha ◽  
R. S. R. Gorla ◽  
M. R. Krishnamurthy ◽  
B. C. Prasannakumara

This paper considers the problem of steady, boundary layer flow and heat transfer of dusty nanofluid over a stretching surface in the presence of non-uniform heat source/sink and nonlinear thermal radiation with Biot number effect. The base fluid (water) is considered with silver (Ag) nanoparticles along with suspended dust particles. The governing equations in partial form are reduced to a system of non-linear ordinary differential equations using suitable similarity transformations. An effective Runge–Kutta–Fehlberg fourth-fifth order method along with shooting technique is used for the solution. The effects of flow parameters such as nanofluid interaction parameter, magnetic parameter, solid volume fraction parameter, Prandtl number, heat source/sink parameters, radiation parameter, temperature ratio parameter and Biot number on the flow field and heat-transfer characteristics were obtained and are tabulated. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, comparison with the existing results was made and found to be in good agreement.


2021 ◽  
Vol 58 (2) ◽  
pp. 6489-6496
Author(s):  
Kemparaju M. C , B. Lavanya, Mahantesh M. Nandeppanavar, N. Raveendra

The two-dimensional limit layer stream of the Liquefying MHD stagnation point stream and warmth movement of a Nano liquid with non-direct warm radiation and compound reaction was researched in the current paper. The supervising PDE's are turned into an arrangement of Tribute's using rational adjustments in likeness and then mathematically unravelled using shooting strategy. The effect on speed, temperature and concentrate profiles of dissolving heat action, Prandtl number, material reaction, warm radiation and Schmidt number, similar to bountiful significant boundaries, is studied graphically


2018 ◽  
Vol 7 (4.10) ◽  
pp. 605 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
K. Ramesh Babu ◽  
P. V. Satyanarayana

The present work nonlinear thermal radiation and chemical reaction effect on three-dimensional MHD flow of permeable medium analysed. We are considering introduce the Darcy-Forchheimer law along with axial and transverse velocity. Using suitable transportations the nonlinear partial differential equations are converted into ordinary differential equations. These equations are solved numerically by 4th Runge-Kutta-Fehlberg scheme with shooting procedure. We are getting unique numerical solution for distinct physical variables temperature and concentration fields are depicted. Also the heat transfer and skin friction coefficients drawn through numerical data. We are finding great results of the velocity profiles behaviors opposite trend of porosity and Forchheimer parameters, the profiles of and behavior reverse trend follows other than chemical reaction parameter, both directions of skin friction coefficient and heat transfer rates reduction.  


Sign in / Sign up

Export Citation Format

Share Document