scholarly journals Effect of distal esophageal irritation on the changes of cystometry parameters to esophagus and colon distentions in rats

2019 ◽  
Vol 97 (8) ◽  
pp. 766-772
Author(s):  
Ezidin G. Kaddumi

The coexistence of different visceral pathologies in patients suffering from irritable bowel syndrome, interstitial cystitis, and other pathologies, necessitates the study of these pathologies under complicated conditions. In the present study, cystometry recordings were used to investigate the effect of distal esophageal chemical irritation on the urinary bladder interaction with distal colon distention, distal esophageal distention, and electrical stimulation of abdominal branches of vagus nerve. Distal esophageal chemical irritation significantly decreased the intercontraction time via decreasing the voiding time. Also, distal esophageal chemical irritation significantly decreased the pressure amplitude by decreasing the maximum pressure. Following distal esophageal chemical irritation, distal esophageal distention was able to significantly decrease the intercontraction time by decreasing the storage time. However, 3 mL distal colon distention significantly increased the intercontraction time by increasing the storage time. On the other hand, following distal esophageal chemical irritation, electrical stimulation of abdominal branches of vagus nerve did not have any significant effect on intercontraction time. However, electrical stimulation of abdominal branches of vagus nerve significantly increased the pressure amplitude by increasing the maximum pressure. The results of this study demonstrate that urinary bladder function and interaction of bladder with other viscera can be affected by chemical irritation of distal esophagus.

2017 ◽  
Vol 47 (3) ◽  
pp. 345-351
Author(s):  
S. Yu. Zhilyaev ◽  
A. N. Moskvin ◽  
T. F. Platonova ◽  
I. T. Demchenko

1983 ◽  
Vol 244 (4) ◽  
pp. E317-E322 ◽  
Author(s):  
F. Rohner-Jeanrenaud ◽  
A. C. Hochstrasser ◽  
B. Jeanrenaud

In vivo glucose-induced insulin secretion was greater in preweaned preobese 17-day-old Zucker rats than in the corresponding controls. This hypersecretion of insulin was reversed to normal by acute pretreatment with atropine. A short-lived (30 s) electrical stimulation of the vagus nerve preceding a glucose load potentiated the in vivo glucose-induced insulin release in adult animals (6-9 wk) and more so in obese Zucker (fa/fa) than in lean rats. This suggested the existence of enhanced sensitivity and/or responsiveness of the B cells of obese animals to the parasympathetic system. That the parasympathetic tone was increased in adult obese Zucker (fa/fa) rats was corroborated by the observation that acute vagotomy of these animals resulted in a significant decrease in glucose-induced insulin secretion, whereas no such effect was seen in lean rats. Also, perfused pancreases from adult obese (fa/fa) rats oversecreted insulin during a stimulation by arginine when compared with controls, an oversecretion that was restored toward normal by superimposed infusion of atropine. It is concluded that a) the increased insulin secretion of preobese Zucker fa/fa rats is an early abnormality that is mediated by the vagus nerve, and b) increased secretion of insulin in adult obese fa/fa rats continues to be partly vagus-nerve mediated, although a decreased sympathetic tone and other unknown defects could conceivably play a role as well.


1970 ◽  
Vol 61 (11) ◽  
pp. 1069-1075
Author(s):  
Goichi Momose ◽  
Hiroshi Endo ◽  
Hiroyo Ito

1983 ◽  
Vol 245 (3) ◽  
pp. R311-R320 ◽  
Author(s):  
R. Schondorf ◽  
W. Laskey ◽  
C. Polosa

The aim of the present study was to evaluate the organization of neural circuitry responsible for the intersegmental transmission of input from urinary bladder afferents to sympathetic preganglionic neurons (SPNs). The electrical activity of SPNs was recorded from axons of the cervical sympathetic trunk in anesthetized central nervous system (CNS)-intact and in unanesthetized midcollicular-decerebrate or acute C1 spinal cats. In all three preparations, tonically active SPNs were excited or inhibited by 1) electrical stimulation of myelinated afferents of the pelvic or hypogastric nerve, both of which contain bladder afferents, and 2) spontaneous contraction or distension of the urinary bladder. The SPN responses to bladder distension were abolished by pelvic nerve section. A comparison of responses of SPNs in CNS-intact and acute spinal animals to electrical stimulation of pelvic nerve afferents suggests that both propriospinal and supraspinal circuits are involved in the intersegmental transmission of input from bladder afferents to SPNs.


2012 ◽  
Vol 61 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Magdalena Szczerbowska-Boruchowska ◽  
Anna Krygowska-Wajs ◽  
Agata Ziomber ◽  
Piotr Thor ◽  
Pawel Wrobel ◽  
...  

Neuroreport ◽  
1995 ◽  
Vol 7 (1) ◽  
pp. 313-317 ◽  
Author(s):  
Thomas P. Gottwald ◽  
Bryan R. Hewlett ◽  
Sárka Lhoták ◽  
Ron H. Stead

1993 ◽  
Vol 60 (1) ◽  
pp. 87-89 ◽  
Author(s):  
C. Simeone ◽  
E. Frego ◽  
T. Zanotelli ◽  
R. Capra ◽  
A. Lenzi ◽  
...  

In 1967 Shealy first used electrical stimulation of the spinal cord to treat spasticity and pain. This therapy proved to be effective for bladder dysfunction too. The effect of electrical stimulation of the spinal cord at thoracic level has been evaluated in 18 neurogenic patients suffering from hyperreflexia with detrusor-sphincter dyssynergia. Bladder function improved significantly in 13 (73%). Partial or complete relief of bladder hyperreflexia, marked increased of bladder capacity and reduction of residual urine were recorded. The beneficial effect of stimulation indicates that it is a safe and effective alternative treatment for the neuropathic bladder and careful trials with further investigations should be carried out.


Sign in / Sign up

Export Citation Format

Share Document