Evaluation of alternative prey-, predator-, and ratio-dependent functional response models in a zooplankton microcosm

2017 ◽  
Vol 95 (3) ◽  
pp. 177-182 ◽  
Author(s):  
Christina M. Prokopenko ◽  
Katrine Turgeon ◽  
John M. Fryxell

There is strenuous debate among ecologists regarding the inclusion of predator density into the originally prey-dependent functional response. We provided comprehensive empirical comparisons of alternative functional response models for the predatory ostracod Heterocypris incongruens (Ramdohr, 1808) and the rotifer Brachionus calyciflorus (Pallas, 1766) as its prey in small freshwater microcosms. Prey killed was measured at factorial combinations of four predator densities and five prey densities, and was recorded at 3 min intervals over 60 min experiments. To support the potential effect of predator interference on per capita kill rate, we recorded ostracod activity and aggression. Kill rate increased following a saturating function with increasing prey density and decreased with increasing predator density. Model evaluation using an information–theoretic approach indicated that the Arditi–Ginzburg type II ratio-dependent model performed best, followed by the Arditi–Akcakaya and Beddington–DeAngelis type II predator-dependent models, suggesting that predator interference was important in predicting kill rates. Interference among predators increased and their activity decreased with increasing predator density, providing confirmation that interference was responsible for the predator-dependent effect. By combining a microcosm experiment and behavioral observations, our results suggest that predator interference at realistic population densities influences ostracod kill rates and this form of interference was best accommodated by predator-dependent models.

2015 ◽  
Vol 282 (1801) ◽  
pp. 20142121 ◽  
Author(s):  
Henrik Sjödin ◽  
Åke Brännström ◽  
Göran Englund

We derive functional responses under the assumption that predators and prey are engaged in a space race in which prey avoid patches with many predators and predators avoid patches with few or no prey. The resulting functional response models have a simple structure and include functions describing how the emigration of prey and predators depend on interspecific densities. As such, they provide a link between dispersal behaviours and community dynamics. The derived functional response is general but is here modelled in accordance with empirically documented emigration responses. We find that the prey emigration response to predators has stabilizing effects similar to that of the DeAngelis–Beddington functional response, and that the predator emigration response to prey has destabilizing effects similar to that of the Holling type II response. A stability criterion describing the net effect of the two emigration responses on a Lotka–Volterra predator–prey system is presented. The winner of the space race (i.e. whether predators or prey are favoured) is determined by the relationship between the slopes of the species' emigration responses. It is predicted that predators win the space race in poor habitats, where predator and prey densities are low, and that prey are more successful in richer habitats.


2010 ◽  
Vol 365 (1550) ◽  
pp. 2279-2288 ◽  
Author(s):  
Evelyn Merrill ◽  
Håkan Sand ◽  
Barbara Zimmermann ◽  
Heather McPhee ◽  
Nathan Webb ◽  
...  

Quantifying kill rates and sources of variation in kill rates remains an important challenge in linking predators to their prey. We address current approaches to using global positioning system (GPS)-based movement data for quantifying key predation components of large carnivores. We review approaches to identify kill sites from GPS movement data as a means to estimate kill rates and address advantages of using GPS-based data over past approaches. Despite considerable progress, modelling the probability that a cluster of GPS points is a kill site is no substitute for field visits, but can guide our field efforts. Once kill sites are identified, time spent at a kill site (handling time) and time between kills (killing time) can be determined. We show how statistical models can be used to investigate the influence of factors such as animal characteristics (e.g. age, sex, group size) and landscape features on either handling time or killing efficiency. If we know the prey densities along paths to a kill, we can quantify the ‘attack success’ parameter in functional response models directly. Problems remain in incorporating the behavioural complexity derived from GPS movement paths into functional response models, particularly in multi-prey systems, but we believe that exploring the details of GPS movement data has put us on the right path.


2011 ◽  
Vol 177 (6) ◽  
pp. 752-766 ◽  
Author(s):  
Michael W. McCoy ◽  
Benjamin M. Bolker ◽  
Karen M. Warkentin ◽  
James R. Vonesh

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1135
Author(s):  
Lin Jiang ◽  
Runa Zhao ◽  
Hui Tian ◽  
Xuesan Wu ◽  
Feng Guo ◽  
...  

Terrestrial slugs are a prominent agricultural pest worldwide. To mitigate the negative effects of chemical pest control, biological control involves the use of natural enemies to reduce the impact of target pests. Numerous insects are natural predators of slugs. This study evaluated potential of the predatory species, Carabus elysii Thomson (Coleoptera: Carabidae) to biologically control the terrestrial slug, Agriolimax agrestis. Laboratory experiments were conducted to investigate the functional response, searching efficiency, and interference effect of female and male C. elysii adults regarding adult, immature, and juvenile A. agrestis individuals. The results show that both female and male ground beetle adults are functionally capable of preying on different sizes of terrestrial slugs. C. elysii exhibited Holling type II functional responses when preying on A. agrestis. The maximum daily prey consumption was 35.5 juveniles, 25.1 immatures, and 17.1 adults for adult females and 26.9 juveniles, 20.3 immatures, and 11.6 adults for adult males. The searching efficiency of female C. elysii adults regarding A. agrestis was always higher than that of male adults for identical ages and densities of A. agrestis. Moreover, the predation of C. elysii on slugs was affected by predator density. The disturbance coefficient of male C. elysii were the highest on adult A. agrestis. The results of this study suggest that female C. elysii exhibit a high potential for the biological control of A. agrestis.


Sign in / Sign up

Export Citation Format

Share Document