Eocene rotation of the Coast Plutonic Complex and Intermontane Belt: paleomagnetism of Eocene plutons along the Klondike Highway

2011 ◽  
Vol 48 (3) ◽  
pp. 645-660 ◽  
Author(s):  
David T.A. Symons ◽  
Kazuo Kawasaki

Paleomagnetic results are reported for the ∼59 Ma Skagway, ∼54 Ma Fraser, ∼53 Ma Summit Lake, and ∼48 Ma Clifton felsic plutons of the eastern Coast Plutonic Complex (CPC) that outcrop along the south Klondike Highway in Alaska and British Columbia. Thermal and alternating field step demagnetizing methods yielded stable characteristic remanent magnetization (ChRM) directions for all 29 sites of normal, reversed, and mixed polarity. The ChRM resides in single or pseudosingle domain magnetite and (or) pyrrhotite that is shown to be primary by contact tests with the ∼47 Ma vertical White Pass mafic dikes. Paleopoles from six 56 to 50 Ma (mean 52 ± 2 Ma) Intermontane Belt – Yukon–Tanana terrane (IMB–YTT) units that cannot be explained by tectonic tilt are compared with nine clustered 59 to 46 Ma (mean 52 ± 4 Ma) eastern CPC paleopoles. Both paleopole populations show nonsignificant poleward (northward) translation relative to North America (IMB–YTT, 3.7° ± 5.3°N; CPC, 4.3° ± 6.4°S; overall, 1.2° ± 4.9°S), indicating that northward translation of the accreted terranes ended by ∼58 Ma. Conversely, both populations show clockwise (CW) rotation that is either highly significant or substantial (IMB–YTT, 19.3° ± 10.5 °CW; CPC, 7.1° ± 16.1 °CW; overall 12.8° ± 10.9 °CW). The results are best explained by tectonic rotation from ∼50 to ∼45 Ma of the IMB–YTT as a thin-skin on top of North America during emplacement and co-incident rotation of the massive Eocene plutons of the eastern CPC along the North American margin.


2009 ◽  
Vol 121 (9-10) ◽  
pp. 1362-1380 ◽  
Author(s):  
J. Brian Mahoney ◽  
Sarah M. Gordee ◽  
James W. Haggart ◽  
Richard M. Friedman ◽  
Larry J. Diakow ◽  
...  


2012 ◽  
Vol 49 (7) ◽  
pp. 796-817 ◽  
Author(s):  
E.H. Brown

The San Juan Islands – northwest Cascades thrust system in Washington and British Columbia is composed of previously accreted terranes now assembled as four broadly defined composite nappes stacked on a continental footwall of Wrangellia and the Coast Plutonic Complex. Emplacement ages of the nappe sequence are interpreted from zircon ages, field relations, and lithlogies, to young upward. The basal nappe was emplaced prior to early Turonian time (∼93 Ma), indicated by the occurrence of age-distinctive zircons from this nappe in the Sidney Island Formation of the Nanaimo Group. The emplacement age of the highest nappe in the thrust system postdates 87 Ma detrital zircons within the nappe. The nappes bear high-pressure – low-temperature (HP–LT) mineral assemblages indicative of deep burial in a thrust wedge; however, several features indicate that metamorphism occurred prior to nappe assembly: metamorphic discontinuities at nappe boundaries, absence of HP–LT assemblages in the footwall to the nappe pile, and absence of significant unroofing detritus in the Nanaimo Group. A synorogenic relationship of the thrust system to the Nanaimo Group is evident from mutually overlapping ages and by conglomerates of Nanaimo affinity that lie within the nappe pile. From the foregoing relations, and broader Cordilleran geology, the tectonic history of the nappe terranes is interpreted to involve initial accretion and subduction-zone metamorphism south of the present locality, uplift and exhumation, orogen-parallel northward transport of the nappes as part of a forearc sliver, and finally obduction at the present site over the truncated south end of Wrangellia and the Coast Plutonic Complex.



1979 ◽  
Vol 16 (6) ◽  
pp. 1166-1175 ◽  
Author(s):  
Jo Anne Nelson

The western margin of the Coast Plutonic Complex, one of the major tectonic boundaries of the Canadian Cordillera, has been variously interpreted as an intrusive contact, a shear zone, and a suture zone joining the Early Mesozoic Insular Belt to the North American continent. A representative section of this boundary, exposed on islands in Johnstone Strait, is an intrusive contact along which a quartz diorite with peripheral mafic phases truncates Early Mesozoic sediments and volcanics of the Insular Belt. Concordant hornblende–biotite pairs and two whole rock biotite isochrons date the intrusion as Late Jurassic (151 Ma). Prior to intrusion the stratified units underwent prehnite–pumpellyite facies metamorphism and west-northwest block faulting.The contact aureole of the quartz diorite and its associated mafic phases involves greenschist and hornblende–hornfels facies assemblages. Total pressure in the upper Karmutsen Formation during contact metamorphism was less than 2.5 × 105 kPa. The maximum contact temperature was between 670 and 700 °C. Forcible emplacement of the intrusion caused penetrative deformation of wall rocks in the inner aureole. The maximum contact temperatures indicate that the plutonic bodies were at near-liquidus temperatures when emplaced.The contact on Hardwicke and West Thurlow Islands appears representative of most of the tectonic boundary between the southern Coast Plutonic Complex and the Insular Belt. The western margin of the Coast Plutonic Complex is thus a Late Mesozoic magmatic front, the western limit of the intense magmatism that generated the Coast Plutonic Complex. The formation of Georgia Depression over the province boundary was a later event, coeval with major uplift of the Coast Plutonic Complex.



1991 ◽  
Vol 28 (4) ◽  
pp. 532-541 ◽  
Author(s):  
Margaret E. Rusmore ◽  
G. J. Woodsworth

New data on Upper Triassic rocks in the eastern Coast Mountains show that it is Stikinia, not Wrangellia, that lies along the eastern margin of the Coast Plutonic Complex, at least as far south as latitude 51°N. These rocks constitute the upper Carnian–lower Norian Mt. Moore formation and the upper Norian Mosley formation. Clinopyroxene-phyric basaltic to andesitic breccia with lesser volcanic sandstone and rare carbonate compose the Mt. Moore formation. The Mosley formation comprises mafic volcaniclastic rocks and limestone. Correlation of these formations with Stikinia is based on similarities in age, stratigraphy, lithology, basalt geochemistry, and inferred tectonic setting.Recognition of Upper Triassic arc-related rocks of the Cadwallader terrane east of its previously known extent indicates that the Cadwallader terrane, rather than Stikinia, underlies much of the southern Intermontane Belt. The revised terrane distribution shows that Stikinia lay west of both the Cadwallader and Bridge River terranes prior to Cretaceous and Tertiary faulting. This configuration supports the idea that the Cadwallader and Stikine terranes represent fragments of a single early Mesozoic arc that was accreted during final closure of the Cache Creek – Bridge River ocean in Middle Jurassic time.



1985 ◽  
Vol 22 (9) ◽  
pp. 1262-1273 ◽  
Author(s):  
T. J. Lewis ◽  
A. M. Jessop ◽  
A. S. Judge

Measured heat fluxes from previously published data and 34 additional boreholes outline the terrestrial heat flow field in southern British Columbia. Combined with heat generation representative of the crust at 10 sites in the Intermontane and Omineca belts, the data define a heat flow province with a reduced heat flow of 63 mW m−2 and a depth scale of 10 km. Such a linear relationship is not found or expected in the Insular Belt and the western half of the Coast Plutonic Complex where low heat fluxes are interpreted to be the result of recent subduction. The apparent boundary between low and high heat flux is a transition over a distance of 20 km, located in Jervis Inlet 20–40 km seaward of the Pleistocene Garibaldi Volcanic Belt.The warm, thin crust of the Intermontane and Omenica Crystalline belts is similar to that of areas of the Basin and Range Province where the youngest volcanics are more than 17 Ma in age. Processes 50 Ma ago that completely heated the crust and upper mantle could theoretically produce such high heat fluxes by conductive cooling of the lithosphere. But it is more likely that the asthenosphere flows towards the subduction zone, bringing heat to the base of the lithosphere. Since the reduced heat flow is high but constant, large differences in upper crustal temperatures within this heat flow province at present are caused by large variations in both crustal heat generation and near-surface thermal conductivity. The sharp transition in heat flux near the coast is the result of the combined effects of convective heating of the eastern Coast Plutonic Complex, pronounced differential uplift and erosion across a boundary within the Coast Plutonic Complex, and the subducting oceanic plate.



1979 ◽  
Vol 16 (10) ◽  
pp. 1988-1997 ◽  
Author(s):  
Gregg W. Morrison ◽  
Colin I. Godwin ◽  
Richard L. Armstrong

Sixteen new K–Ar dates and four new Rb–Sr isochrons help define four plutonic suites in the Whitehorse map area, Yukon. The Triassic(?) suite, defined on stratigraphic evidence, is the southern extension of the Yukon Crystalline Terrane and is correlative with plutonic suites in the Intermontane Belt in British Columbia. The mid-Cretaceous (~100 Ma) suite in the Intermontane Belt in the Whitehorse map area is time equivalent to plutonic suites in the Omineca Crystalline Belt to the east. Late Cretaceous (~70 Ma) and Eocene (~55 Ma) suites include volcanic and subvolcanic as well as plutonic phases and are correlative with continental volcano–plutonic suites near the eastern margin of the Coast Plutonic Complex. The predominance of the mid-Cretaceous suite in the Intermontane Belt in Whitehorse and adjacent map areas in Yukon and northern British Columbia suggests that this area has undergone posttectonic magmatism more characteristic of the Omineca Crystalline Belt than of the Intermontane Belt elsewhere in the Canadian Cordillera.87Sr/86Sr initial ratio determinations suggest that the southern extension of the Yukon Crystalline Terrane in the western part of the Whitehorse map area and in northern British Columbia includes Precambrian crust separated from the North American craton by Paleozoic oceanic crust of the Intermontane Belt.



1977 ◽  
Vol 14 (9) ◽  
pp. 2127-2139 ◽  
Author(s):  
D. T. A. Symons

The Lower Cretaceous Stephens Island (102 ± 8 Ma) and Captain Cove (109 ± 6 Ma) plutons and the Upper Jurassic Gil Island (136 ± 3 Ma) and Banks Island (144 ± 6 Ma) plutons belong to the western K–Ar age zone of the N 35° W trending Coast plutonic complex southwest of Prince Rupert, B.C. After removal of initial viscous components, AF demagnetization isolates a stable primary remanence at 36 of 49 sites (10 specimens from 5 cores/site) before anhysteretic components are added. All sites have normal polarity which is consistent because their K–Ar ages fall in the predominantly normal Cretaceous and Jurassic Quiet Intervals. The poles for Stephens Island (339° W, 67° N (7°, 10°)), Captain Cove (9° W 72° N (8°, 11°)), and Gil Island (357° N. 70° N (6°, 8°)) lie just north of Britain and are discordant for the North American craton. The tectonic panel including these plutons was tilted [Formula: see text] during the Upper Cretaceous–Paleocene orogeny as the leading edge of the North American plate overrode the subducting oceanic Kula Plate. This interpretation is supported by other arguments including the attitudes of contacts and foliations, plutonic trend directions, distribution of metamorphic grades, and paleomagnetic data from the area to the east. The Banks Island pluton lies in the tectonic panel to the west. Its pole of 210° W, 81° N (33°, 38°) is poorly defined but apparently concordant.





1990 ◽  
Vol 27 (2) ◽  
pp. 212-218 ◽  
Author(s):  
T. A. Vandall ◽  
H. C. Palmer

The Middle Eocene Ootsa Lake Group is exposed in the central portion of the Stikine Terrane, where it was sampled along the shoreline of Tahtsa Reach and Whitesail Reach. The group consists of dominantly subaerial flows, which range in composition from basalt to rhyolite, that unconformably overly the Jurassic Hazelton Group. Detailed alternating-field and thermal stepwise demagnetizations were done on all specimens from the 21 sites collected. The presence of a normal- and reversed-polarity remanence, a positive fold test, and high coercivities and unblocking temperatures indicate that a prefolding primary remanence has been isolated. The mean tilt-corrected direction of D = 002.2°, I = 69.2 °(α95 = 7.4°) from 13 sites for which paleohorizontal is well known yields a pole position at 354.6°E, 88.0°N (A95 = 11.5°), which is statistically indistinguishable from published 50 Ma reference poles for cratonic North America. This evidence demonstrates that the proposed large-scale northward displacement of Stikinia since mid-Cretaceous was completed by at least Middle Eocene time. This result is consistent with other paleomagnetic results from Stikinia, Quesnellia, and the Coast Plutonic Complex indicating that much of the allochthonous Cordillera had assembled and docked with cratonic North America by the Middle Eocene.



10.1029/ft307 ◽  
1989 ◽  
Author(s):  
R. W. Tabor ◽  
R. A. Haugerud ◽  
E. H. Brown ◽  
R. S. Babcock ◽  
R. B. Miller


Sign in / Sign up

Export Citation Format

Share Document