SH waves in layered transversely isotropic media—a wave approach

1979 ◽  
Vol 16 (10) ◽  
pp. 1998-2008 ◽  
Author(s):  
P. F. Daley ◽  
F. Hron

There are many reports in the literature of anomalies in traveltime data when an isotropic homogeneous Earth model is used to interpret field data. In several cases, the introduction of a layered transversely isotropic model has successfully explained these kinematic irregularities. However, it is useful, in fact essential, to confirm the kinematic fit with a dynamic (amplitude) comparison.In this paper the problem of SH waves propagating in a transversely isotropic plane layered medium is discussed through the use of integral transforms and evaluation by steepest descents. This procedure yields not only the asymptotic solution which is also attainable using an asymptotic ray series approach, but also allows for the investigation of the interference of the reflected and head waves in the vicinity of the critical point (point of critical refraction). It is in this region that asymptotic ray theory breaks down or at least introduces significant error in the displacement amplitudes.It can be shown that a simple transformation will reduce this problem to one that may be solved exactly by the Cagnaird de Hoop technique but it is instructive to examine nonspherical wave-fronts in order to obtain an insight into more complicated anisotropic media.

1996 ◽  
Vol 86 (2) ◽  
pp. 524-529
Author(s):  
Hayrullah Karabulut ◽  
John F. Ferguson

Abstract An extension of the boundary integral method for SH waves is given for transversely isotropic media. The accuracy of the method is demonstrated for a simple flat interface problem by comparison to the Cagniard-de Hoop solution. The method is further demonstrated for a case with interface topography for both surface and vertical seismic profiles. The new method is found to be both accurate and effective.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 658-667 ◽  
Author(s):  
Reinaldo J. Michelena

The elastic constants that control P‐ and SV‐wave propagation in a transversely isotropic media can be estimated by using P‐ and SV‐wave traveltimes from either crosswell or VSP geometries. The procedure consists of two steps. First, elliptical velocity models are used to fit the traveltimes near one axis. The result is four elliptical parameters that represent direct and normal moveout velocities near the chosen axis for P‐ and SV‐waves. Second, the elliptical parameters are used to solve a system of four equations and four unknown elastic constants. The system of equations is solved analytically, yielding simple expressions for the elastic constants as a function of direct‐ and normal‐moveout velocities. For SH‐waves, the estimation of the corresponding elastic constants is easier because the phase velocity is already elliptical. The procedure, introduced for homogeneous media, is generalized to heterogeneous media by using tomographic techniques.


2019 ◽  
Vol 219 (3) ◽  
pp. 1717-1728 ◽  
Author(s):  
J Zhou ◽  
E Pan ◽  
M Bevis

SUMMARY We present an accurate approach for calculating the point-dislocation Green's functions (GFs) for a layered, spherical, transversely-isotropic and self-gravitating Earth. The formalism is based on the approach recently used to find analytical solutions for the dislocation Love numbers (DLNs). However, in order to make use of the DLNs, we first analyse their asymptotic behaviour, and then the behaviour of the GFs computed from the DLNs. We note that the summations used for different GF components evolve at different rates towards asymptotic convergence, requiring us to use two new and different truncation values for the harmonic degree (i.e. the index of summation). We exploit this knowledge to design a Kummer transformation that allows us to reduce the computation required to evaluate the GFs at the desired level of accuracy. Numerical examples are presented to clarify these issues and demonstrate the advantages of our approach. Even with the Kummer transformation, DLNs of high degree are still needed when the earth model contains very fine layers, so computational efficiency is important. The effect of anisotropy is assessed by comparing GFs for isotropic and transversely isotropic media. It is shown that this effect, though normally modest, can be significant in certain contexts, even in the far field.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 1012-1013 ◽  
Author(s):  
Bok S. Byun ◽  
Shi‐Chen W. Cheng

Byun (1984) described some important surface seismic characteristics (such as “apparent” velocities) for transversely isotropic media. His theoretical development was based on the elliptical surface fit to the actual wave surface of energy propagation from a point source to describe local properties of the ray. In this note we give more theoretical insight into the apparent axial properties of the surface observations made in Byun’s (1984) paper. More comprehensive studies were reported in Helbig (1983) and Hake et al. (1984) for other surface seismic properties of transversely isotropic media.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


1995 ◽  
Vol 26 (2-3) ◽  
pp. 431-436 ◽  
Author(s):  
Patrick N.(Jr). Okoye ◽  
N. F. Uren ◽  
W. Waluyo

2020 ◽  
Vol 41 (4) ◽  
pp. 805-833 ◽  
Author(s):  
Jidong Yang ◽  
Biaolong Hua ◽  
Paul Williamson ◽  
Hejun Zhu ◽  
George McMechan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document