Glacial history and stratigraphy of the Alberta portion of the Kananaskis Lakes map area

1980 ◽  
Vol 17 (4) ◽  
pp. 459-477 ◽  
Author(s):  
L. E. Jackson Jr.

Deposits of till, glaciofluvial, and glaciolacustrine sediments representing four glaciations are recognized in the Alberta portions of the Kananaskis Lakes 1:250 000 map sheet (82J). The oldest episode is represented by scattered erratics and patches of till above 1400 m in the Porcupine Hills. This episode involved nonsynchronous advances of Laurentide and Rocky Mountain ice sheets. The next glacial episode involved coalescence of Rocky Mountain and Laurentide ice in the eastern Foothills, north of the Porcupine Hills. The Rocky Mountain Maycroft Till, the Laurentide Maunsell Till, and the glaciolacustrine Chain Lakes Clays and Silts were deposited during this episode. The next glaciation involved the last coalescence of Rocky Mountain and Laurentide ice sheets in the vicinity of the study area. The Rocky Mountain Bow Valley Till and the mixed Rocky Mountain – Laurentide provenance Erratics Train Till were deposited during this episode along with the Foothills Erratics Train. The latest glaciation involved an advance of the Laurentide ice sheet to the eastern margin of the study area and Rocky Mountain valley glaciers to the mountain front. One readvance of Rocky Mountain valley glaciers during retreat is recognized. The glaciolacustrine Midnapore Silts and Clays were deposited due to Laurentide ice damming of Bow River valley while the Canmore and Eisenhower Junction Tills were deposited by valley glaciers. On the basis of land mammal chronology, the two oldest glaciations are believed to be Illinoian in age. Radiocarbon evidence indicates the Erratics Train Glaciation to be at least Early Wisconsinan in age and the post-Erratics Train to be of Late Wisconsinan age.

2007 ◽  
Vol 44 (4) ◽  
pp. 445-457 ◽  
Author(s):  
Jan M Bednarski ◽  
I Rod Smith

Mapping the surficial geology of the Trutch map area (NTS 94G) provides new data on the timing of continental and montane glaciations along the Foothills of northeastern British Columbia. Striated surfaces on mountain crests were dated to the Late Wisconsinan substage by cosmogenic dating. The striations were produced by eastward-flowing ice emanating from the region of the Continental Divide. This ice was thick enough to cross the main ranges and overtop the Rocky Mountain Foothill summits at 2000 m above sea level (asl). It is argued here that such a flow, unhindered by topography, could only have been produced by the Cordilleran Ice Sheet and not by local cirque glaciation. During this time, the Cordilleran Ice Sheet dispersed limestone and schist erratics of western provenance onto the plains beyond the mountain front. Conversely, the Laurentide Ice Sheet did not reach its western limit in the Foothills until after Cordilleran ice retreated from the area. During its maximum, the Laurentide ice penetrated the mountain valleys up to 17 km west of the mountain front, and deposited crystalline erratics from the Canadian Shield as high as 1588 m asl along the Foothills. In some valleys a smaller montane advance followed the retreat of the Laurentide Ice Sheet.


2007 ◽  
Vol 45 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Alejandra Duk-Rodkin ◽  
Owen L. Hughes

ABSTRACT The Mackenzie Mountains were glaciated repeatedly by large valley glaciers that emanated from the Backbone Ranges, and by much smaller valley glaciers that emanated from peaks in the Canyon Ranges. During the Late Wisconsinan the Laurentide Ice Sheet reached its all-time maximum position. The ice sheet pressed against the Canyon Ranges and moved up major valleys causing the diversion of mountain waters and organizing a complex meltwater system that drained across mountain interfluve areas towards the northwest. Two ages of moraines deposited by montane glaciers occur widely in the Mackenzie Mountains. Near the mountain front certain of the older moraines have been truncated by the Laurentide Ice Sheet, and others have been incised by meltwater streams emanating from the Laurentide ice margin, indicating that these older moraines predate the maximum Laurentide advance. Locally, certain of the younger montane moraines breach moraines and other ice marginal features of the Laurentide maximum, indicating that the younger montane glaciation post-dated the Laurentide maximum. Some large montane glaciers extended out from the mountains to merge with the retreating Laurentide Ice Sheet. There are several localities that display the age relationships between montane and Laurentide glaciations such as Dark Rock Creek, Durkan-Lukas Valley, Little Bear River and Katherine Creek. The older of the local montane glaciations is correlated tentatively with Reid Glaciation (lllinoian?) of central Yukon, and the younger with the Late Wisconsinan McConnell Glaciation. The Laurentide Glaciation is correlated with Hungry Creek Glaciation of Bonnet Plume Depression, which probably culminated about 30,000 years ago or somewhat later.


2019 ◽  
Vol 92 (2) ◽  
pp. 469-482 ◽  
Author(s):  
Martin Margold ◽  
John C. Gosse ◽  
Alan J. Hidy ◽  
Robin J. Woywitka ◽  
Joseph M. Young ◽  
...  

AbstractThe Foothills Erratics Train consists of large quartzite blocks of Rocky Mountains origin deposited on the eastern slopes of the Rocky Mountain Foothills in Alberta between ~53.5°N and 49°N. The blocks were deposited in their present locations when the western margin of the Laurentide Ice Sheet (LIS) detached from the local ice masses of the Rocky Mountains, which initiated the opening of the southern end of the ice-free corridor between the Cordilleran Ice Sheet and the LIS. We use 10Be exposure dating to constrain the beginning of this decoupling. Based on a group of 12 samples well-clustered in time, we date the detachment of the western LIS margin from the Rocky Mountain front to ~14.9 ± 0.9 ka. This is ~1000 years later than previously assumed, but a lack of a latitudinal trend in the ages over a distance of ~500 km is consistent with the rapid opening of a long wedge of unglaciated terrain portrayed in existing ice-retreat reconstructions. A later separation of the western LIS margin from the mountain front implies higher ice margin–retreat rates in order to meet the Younger Dryas ice margin position near the boundary of the Canadian Shield ~2000 years later.


1993 ◽  
Vol 30 (8) ◽  
pp. 1697-1707 ◽  
Author(s):  
Rémi Charbonneau ◽  
Peter P. David

The lithological content of tills in central Gaspésie is evaluated by pebble counting of 231 samples collected in excavation pits and containing 200 pebbles each. The results are used here to establish the pattern of debris dispersal and to infer the glacial history of the area. The dispersal pattern is characterized by well-defined southeasterly (160–170°) and northeasterly (40–60°) trending trains. Half-distance values of glacial transport along the trains range from 5 to 9 km for both directions, suggesting ice flow events of considerable magnitude. The volume of material in the trains represents 1–6 m of glacial erosion of the bedrock. Glacial cirques and short U-shaped valleys, about 100–200 m deep, are incised into the McGerrigle Mountains granite pluton as well as the adjacent metabasalt. The corresponding trains are aligned with these erosional features, indicating that their clast content was derived from those features during an early Alpine Glacier Phase. The southeasterly trending dispersal trains are associated with an invasion of central Gaspésie by the Laurentide Ice Sheet during the Early Wisconsinan, whereas the northeasterly trending trains are associated with a local centre of outflow over Gaspésie during the Late Wisconsinan.


2018 ◽  
Vol 55 (12) ◽  
pp. 1324-1338 ◽  
Author(s):  
Gregory M.D. Hartman ◽  
John J. Clague ◽  
René W. Barendregt ◽  
Alberto V. Reyes

In the past, researchers have disagreed over the maximum extent of the Cordilleran Ice Sheet in the Peace River valley during the Late Wisconsinan. Some workers argued that Cordilleran ice reached beyond the Rocky Mountains and briefly coalesced with the Laurentide Ice Sheet on the westernmost Interior Plains. In contrast, others asserted that Cordilleran ice did not reach beyond the eastern front of the Rocky Mountains. Stratigraphic interpretation of three sections within a Middle Wisconsinan paleovalley and re-examination of a previously published regional stratigraphic framework show that western-sourced ice (likely the Cordilleran Ice Sheet) extended east of the mountain front during the Late Wisconsinan, prior to the incursion of the Laurentide Ice Sheet into the area. This conclusion has implications for Cordilleran Ice Sheet reconstruction and modelling, and provides insight into the interactions between the Cordilleran and Laurentide ice sheets during the last glaciation.


1996 ◽  
Vol 46 (1) ◽  
pp. 19-26 ◽  
Author(s):  
B. Brandon Curry ◽  
Milan J. Pavich

A10Be inventory and14C ages of material from a core from northernmost Illinois support previous interpretations that this area was ice free from ca. 155,000 to 25,000 yr ago. During much of this period, from about 155,000 to 55,000 yr ago, 10Be accumulated in the argillic horizon of the Sangamon Geosol. Wisconsinan loess, containing inherited 10Be, was deposited above the Sangamon Geosol from ca. 55,000 to 25,000 yr ago and was subsequently buried by late Wisconsinan till deposited by the Lake Michigan Lobe of the Laurentide Ice Sheet. The Sangamonian interglacial stage has been correlated narrowly to marine oxygen isotope substage 5e; our data indicate instead that the Sangamon Geosol developed during late stage 6, all of stages 5 and 4, and early stage 3.


1993 ◽  
Vol 30 (4) ◽  
pp. 851-866 ◽  
Author(s):  
O. L. Hughes ◽  
C. Tarnocai ◽  
C. E. Schweger

The Little Bear River section lies in a transition zone between Mackenzie Lowland and Canyon Ranges of Mackenzie Mountains. Within the transition zone, the maximum extent of the Laurentide ice sheet overlaps the former extent of montane glaciers that emanated from the higher parts of Canyon Ranges or from the still higher Backbone Ranges to the southwest. Five montane tills, each with a paleosol developed in its upper part, indicate five separate glaciations during each of which a valley glacier emanating from the headwaters of Little Bear River extended eastward into the transition zone. The uppermost of the montane tills is overlain by boulder gravel containing rocks of Canadian Shield origin deposited by the Laurentide ice sheet.Solum and B horizon depths, red colours, and lack of leaching and cryoturbation indicate that although each successive interglacial interval was cooler than the preceding one, even the last of the intervals was warmer than the Holocene. Climatic conditions during one of the intervals inferred from the paleobotanic data, particularly spruce forest development, are consistent with conditions inferred from the associated paleosol.The uppermost of the montane tills is thought to correlate with till of Reid (Illinoian) age in central Yukon. The paleosol developed on that till is, accordingly, thought to correlate with the Diversion Creek paleosol developed on drift of Reid age. The Laurentide boulder gravel is assigned to a stade of Hungry Creek Glaciation of Late Wisconsinan age. The Laurentide ice sheet reached its apparent all-time western limit during the Hungry Creek Glaciation maximum.


2007 ◽  
Vol 39 (3) ◽  
pp. 229-238 ◽  
Author(s):  
D. A. Fisher ◽  
N. Reeh ◽  
K. Langley

ABSTRACT A three dimensional steady state plastic ice model; the present surface topography (on a 50 km grid); a recent concensus of the Late Wisconsinan maximum margin (PREST, 1984); and a simple map of ice yield stress are used to model the Laurentide Ice Sheet. A multi-domed, asymmetric reconstruction is computed without prior assumptions about flow lines. The effects of possible deforming beds are modelled by using the very low yield stress values suggested by MATHEWS (1974). Because of low yield stress (deforming beds) the model generates thin ice on the Prairies, Great Lakes area and, in one case, over Hudson Bay. Introduction of low yield stress (deformabie) regions also produces low surface slopes and abrupt ice flow direction changes. In certain circumstances large ice streams are generated along the boundaries between normal yield stress (non-deformable beds) and low yield stress ice (deformabie beds). Computer models are discussed in reference to the geologically-based reconstructions of SHILTS (1980) and DYKE ef al. (1982).


1987 ◽  
Vol 24 (10) ◽  
pp. 2004-2015 ◽  
Author(s):  
Stephen R. Hicock

Near Hemlo, Ontario, highly calcareous till is confined to areas located downglacier from Precambrian uplands, at least 150 km from the Paleozoic–Precambrian boundary. It comprises subglacial meltout till between lodgment tills, and the calcareous package overlies noncalcareous basal till (not studied) and underlies noncalcareous supraglacial meltout till. The tills can be distinguished by textural, carbonate, and clast compositions. Glaciotectonic deformations, stone fabrics and striae, and stone provenance from the tills, as well as erosional and depositional landforms, indicate that ice advanced to the south–southwest across bedrock contacts and over Precambrian uplands.Deposition of all five tills can be explained with one glacial event. As the Late Wisconsinan margin of the Laurentide ice sheet advanced against uplands about 20 km northeast of Hemlo it experienced compressive flow while depositing the non calcareous basal till. Upshearing of stoss-side local debris high into the ice also occurred as englacial ice overrode the slowed basal zone. Once over the upland, englacial ice assumed extending flow, and downshearing of distal debris, which was deposited as calcareous lodgment till on the lee sides of uplands. After the glacial maximum, the glacier ceased internal movement and subglacial meltout till was laid down. A late reactivation of the ice deposited the upper lodgment till and final stagnation formed the supraglacial meltout till.


Author(s):  
Scott A. Elias

Present-day environments cannot be completely understood without knowledge of their history since the last ice age. Paleoecological studies show that the modern ecosystems did not spring full-blown onto the Rocky Mountain region within the last few centuries. Rather, they are the product of a massive reshuffling of species that was brought about by the last ice age and indeed continues to this day. Chronologically, this chapter covers the late Quaternary Period: the last 25,000 years. During this interval, ice sheets advanced southward, covering Canada and much of the northern tier of states in the United States. Glaciers crept down from mountaintops to fill high valleys in the Rockies and Sierras. The late Quaternary interval is important because it bridges the gap between the ice-age world and modern environments and biota. It was a time of great change, in both physical environments and biological communities. The Wisconsin Glaciation is called the Pinedale Glaciation in the Rocky Mountain region (after terminal moraines near the town of Pinedale, Wyoming; see chapter 4). The Pinedale Glaciation began after the last (Sangamon) Interglaciation, perhaps 110,000 radiocarbon years before present (yr BP), and included at least two major ice advances and retreats. These glacial events took different forms in different regions. The Laurentide Ice Sheet covered much of northeastern and north-central North America, and the Cordilleran Ice Sheet covered much of northwestern North America. The two ice sheets covered more than 16 million km2 and contained one third of all the ice in the world’s glaciers during this period. The history of glaciation is not as well resolved for the Colorado Front Range region as it is for regions farther north. For instance, although a chronology of three separate ice advances has been established for the Teton Range during Pinedale times, in northern Colorado we know only that there were earlier and later Pinedale ice advances. We do not know when the earlier advance (or multiple advances) took place. However, based on geologic evidence (Madole and Shroba 1979), the early Pinedale glaciation was more extensive than the late Pinedale was.


Sign in / Sign up

Export Citation Format

Share Document