Circulatory and Ventilatory Responses of Rainbow Trout (Salmo gairdneri) to Artificial Manipulation of Gill Surface Area

1971 ◽  
Vol 28 (10) ◽  
pp. 1609-1614 ◽  
Author(s):  
John C. Davis

Reductions in surface area of the gill were artificially produced by ligating various gill arches and occluding their blood supply. Rainbow trout (Salmo gairdneri) responded to a 40–57% reduction in gill area, by increasing cardiac output and ventilation volume, and probably by redistributing blood within the remaining functional gill area. Fish with blood flow to gill arches one and three only, could maintain arterial PO2 at 90–100 mm Hg, whereas, in those with blood flow to arches three and four only, arterial PO2 fell to around 40 mm Hg. The presence of a chemoreceptor site for the regulation of arterial PO2 associated with the efferent blood vessels of arch number one is discussed. Such a receptor may be located in the pseudobranch or in the portion of the brain supplied with arterial blood from the first gill arch.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stig Müller ◽  
Ole-Jakob How ◽  
Stig E Hermansen ◽  
Truls Myrmel

Arginin Vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in various circulatory shock states including cardiogenic shock. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. Aim: We hypothesized that restoring MAP by AVP improves vital organ blood flow in experimental acute cardiac failure. Methods: Cardiac output (CO) and arterial blood flow to the brain, heart, kidney and liver were measured in nine pigs by transit-time flow probes. Heart function and contractility were measured using left ventricular Pressure-Volume catheters. Catheters in central arteries and veins were used for pressure recordings and blood sampling. Left ventricular dysfunction was induced by intermittent coronary occlusions, inducing an 18 % reduction in cardiac output and a drop in MAP from 87 ± 3 to 67 ± 4 mmHg. Results: A low-dose therapeutic infusion of AVP (0.005 u/kg/min) restored MAP but further impaired systemic perfusion (CO and blood flow to the brain, heart and kidney reduced by 29, 18, 23 and 34 %, respectively). The reduced blood flow was due to a 2.0, 2.2, 1.9 and 2.1 fold increase in systemic, brain, heart and kidney specific vascular resistances, respectively. Contractility remained unaffected by AVP. The hypoperfusion induced by AVP was most likely responsible for observed elevated plasma lactate levels and an increased systemic oxygen extraction. Oxygen saturation in blood drawn from the great cardiac vein fell from 31 ± 1 to 22 ± 3 % dropping as low as 10 % in one pig. Finally, these effects were reversed forty minutes after weaning the pigs form the drug. Conclusion: The pronounced reduction in coronary blood flow point to a potentially deleterious effect in postoperative cardiac surgical patients and in patients with coronary heart disease. Also, this is the first study to report a reduced cerebral perfusion by AVP.


1997 ◽  
Vol 272 (1) ◽  
pp. R163-R171
Author(s):  
K. Mori ◽  
M. Maeda

Local maximal velocities of transport (Tmax) and the half-maximum transport constants (KT) for glucose transport across the blood-brain barrier have been determined in local regions of the brain in normal conscious rats. [14C]iodoantipyrine and [3H]methylglucose were infused together intravenously for 2 min in rats with plasma glucose concentrations maintained at different levels, and the time courses of the tracer levels in arterial blood were measured. Local 14C and 3H concentrations were then measured in tissue samples dissected from the frozen brains. By comparing the transport-limited uptake of [3H]methylglucose with the blood flow-limited uptake of [14C]iodoantipyrine, the value of m, a factor between 0 and 10 that accounts for diffusion and/or transport limitations, was derived, and from the equation, m = 1 - PS/F (where PS is capillary permeability-surface area product and F is cerebral blood flow), the permeability-capillary surface area for methylglucose was calculated (S. S. Kety. Pharmacol. Rev. 3: 1-41, 1951). Values for Tmax and KT for glucose were calculated by application of Michaelis-Menten kinetic relationships adapted for the competition for transport between glucose and methylglucose. Tmax was determined in three representative gray structures and one white structure of the brain: Tmax was 5.3 +/- 0.3 (SD) mumol.g-1.min-1 in the gray structures and 4.3 mumol.g-1.min-1 in the white structure. KT was 3.6 +/- 0.4 (SD) mM in the gray structures and 5.9 mM in the white structure. This approach allows the simultaneous determination of local values of Tmax and KT for glucose and the rates of blood flow in various regions of the brain in conscious animals.


1988 ◽  
Vol 65 (2) ◽  
pp. 714-720
Author(s):  
E. Chow ◽  
E. J. Cha ◽  
S. M. Yamashiro

The effect of decreased lung volume on ventilatory responses to arteriovenous fistula-induced increased cardiac output was studied in four chronic awake dogs. Lung volume decreases were imposed by application of continuous negative-pressure breathing of -10 cmH2O to the trachea. The animals were surgically prepared with chronic tracheostomy, indwelling carotid artery catheter, and bilateral arteriovenous femoral shunts. Control arteriovenous blood flow was 0.5 l/min, and test flow level was 2.0 l/min. Arterial blood CO2 tension (PaCO2) was continuously monitored using an indwelling Teflon membrane mass spectrometer catheter, and inhaled CO2 was given to maintain isocapnia throughout. Increased fistula flow alone led to a mean 52% increase in cardiac output (CO), whereas mean systemic arterial blood pressure (Psa) fell 4% (P less than 0.01). Negative-pressure breathing alone raised Psa by 3% (P less than 0.005) without a significant change in CO. Expired minute ventilation (VE) increased by 27% (P less than 0.005) from control in both of these conditions separately. Combined increased flow and negative pressure led to a 50% increase in CO and 56% increase in VE (P less than 0.0025) without any significant change in Psa. Effects of decreased lung volume and increased CO appeared to be additive with respect to ventilation and to occur under conditions of constant PaCO2 and Psa. Because both decreased lung volume and increased CO occur during normal exercise, these results suggest that mechanisms other than chemical regulation may play an important role in the control of breathing and contribute new insights into the isocapnic exercise hyperpnea phenomenon.


1985 ◽  
Vol 58 (4) ◽  
pp. 1225-1230 ◽  
Author(s):  
S. Gelman ◽  
K. C. Fowler ◽  
S. P. Bishop ◽  
L. R. Smith

Cardiac output distribution and regional blood flow were studied during hypocarbia independent of changes in ventilatory parameters. Fifteen cynomolgus monkeys were anesthetized with methohexital sodium (8 mg/kg im) and hyperventilated through an endotracheal tube. Hypocarbia at two levels, 28 +/- 1.8 and 17 +/- 0.6 Torr, was achieved by a stepwise decreasing CO2 flow into the semiclosed system. Regional blood flow was determined with labeled microspheres. At each stage of experiments two sets of microspheres (9 and 15 microns diam) were used simultaneously. The use of two microsphere sizes allowed evaluation of the relationship between total (nutritive and nonnutritive) tissue blood flow, determined with 15-microns spheres, and nutritive blood flow, determined with 9-microns spheres. There was no change in cardiac output or arterial pressure during both degrees of studied hypocarbia. Hypocarbia was accompanied by a decrease in myocardial blood flow determined with 15-microns spheres and preservation of the flow determined with 9-microns spheres. Splenic blood flow was decreased, whereas hepatic arterial blood flow was increased during both levels of hypocarbia. Blood flow through the brain, renal cortex, and gut showed a biphasic response to hypocarbia: during hypocarbia at 28 +/- 1.8 Torr, blood flow determined with 15-microns spheres was unchanged (in the gut) or decreased (in the brain and kidneys), whereas blood flow determined with 9-microns spheres was decreased. During hypocarbia at 17 +/- 0.6 Torr, blood flow determined with 9-microns spheres had a tendency to restore to base-line values.


1979 ◽  
Vol 57 (5) ◽  
pp. 995-1002 ◽  
Author(s):  
David R. Jones ◽  
Robert M. Bryan Jr. ◽  
Nigel H. West ◽  
Raymond H. Lord ◽  
Brenda Clark

The regional distribution of blood flow, both before and during forced diving, was studied in the duck using radioactively labelled microspheres. Cardiac output fell from 227 ± 30 to 95 ± 16 mL kg−1 min−1 after 20–72 s of submergence and to 59 ± 18 mL kg−1 min−1 after 144–250 s of submergence. Mean arterial blood pressure did not change significantly as total peripheral resistance increased by four times during prolonged diving. Before diving the highest proportion of cardiac output went to the heart (2.6 ± 0.5%, n = 9) and kidneys (2.7 ± 0.5%, n = 9), with the brain receiving less than 1%. The share of cardiac output going to the brain and heart increased spectacularly during prolonged dives to 10.5 ± 3% (n = 5) and 15.9 ± 3.8% (n = 5), respectively, while that to the kidney fell to 0.4 ± 0.26% (n = 3). Since cardiac output declined during diving, tissue blood flow (millilitres per gram per minute) to the heart was unchanged although in the case of the brain it increased 2.35 times after 20–75 s of submergence and 8.5 times after 140–250 s of submergence. Spleen blood flow, the highest of any tissue predive (5.6 ± 1.3 mL g−1 min−1, n = 4), was insignificant during diving while adrenal flow increased markedly, in one animal reaching 7.09 mL g−1 min−1. The present results amplify general conclusions from previous research on regional distribution of blood flow in diving homeotherms, showing that, although both heart and brain receive a significant increase in the proportionate share of cardiac output during diving only the brain receives a significant increase in tissue blood flow, which increases as submergence is prolonged.


1983 ◽  
Vol 105 (1) ◽  
pp. 1-14
Author(s):  
PETER NEUMANN ◽  
GEORGE F. HOLETON ◽  
NORBERT HEISLER

Rainbow trout (Salmo gairdneri) were electrically stimulated to exhausting activity and the changes in cardiac output and blood flow distribution to gills and systemic tissues resulting from the developing severe lactacidosis were repeatedly measured by the microsphere method (15 μm). Determination of cardiac output by application of the Fick principle resulted in values not significantly different from cardiac output measured by the indicator dilution technique, suggesting that cutaneous respiration, oxygen consumption, and arterio-venous shunting were insignificant under these conditions. Following muscular activity, cardiac output was elevated by up to 60%. In the gills, the blood flow distribution in the gill arches showed a consistent pattern, even during lactacidosis, with a higher perfusion in gill arches II and III, and in the middle sections of individual gills. Blood flow to white and red muscle was increased much more than cardiac output (+230 and +490%, respectively) such that blood flow to other tissues was actually reduced. We conclude that the elimination of lactate from muscle cells during the recovery period from strenuous exercise is delayed, not as a result of an impaired post-exercise muscle blood flow, but probably as a result of a high diffusion resistance in the cell membrane. Note: Deceased.


1988 ◽  
Vol 135 (1) ◽  
pp. 461-472 ◽  
Author(s):  
P. J. Butler ◽  
D. L. Turner ◽  
A. Al-Wassia ◽  
R. M. Bevan

The distribution of blood flow to a number of organs and tissues of the tufted duck was determined (by the microsphere technique) before and while the birds were swimming at close to their maximum sustainable velocity (i.e. at 0.69 +/− 0.01 ms-1). During swimming, oxygen uptake was twice the pre-exercise value. Cardiac output increased by 70%, there was no significant change in arterial blood pressure and total systemic conductance increased by 44%. There were no significant changes in blood flow to the brain, liver, adrenal glands, spleen and respiratory muscles. Not surprisingly, there were increases in blood flow to the heart (30% increase) and to the muscles of the hindlimbs (to 3.1 times the pre-exercise value). Significant reductions in flow occurred to various parts of the gastrointestinal tract (although not to the gastrointestinal tract as a whole), to the pancreas and to the pectoralis muscles. In the case of the flight musculature as a whole, the reduction was to approximately 40% of the values in the ducks before exercise. Thus, despite the fact that cardiac output was some three times lower than it would have been during flight, there was a clear redistribution of blood away from some visceral organs and inactive muscles during surface swimming in the tufted duck. This lends support to the suggestion that blood is selectively directed to the legs, as well as to the brain and central nervous system (CNS) and away from the visceral organs and inactive muscles during voluntary diving in these birds.


1987 ◽  
Vol 252 (1) ◽  
pp. H100-H109 ◽  
Author(s):  
J. Itskovitz ◽  
E. F. LaGamma ◽  
A. M. Rudolph

We used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced (29.4 vs. 47.2%) and the proportion of O2 delivery to upper body organs derived from the ductus venosus increased (33.2 vs. 49.4%). Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale (21.9 vs. 44.2%) and constituted the major fraction of the arterial blood supply to the upper body organs (16.5 vs. 36.4%). Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O2 delivery.


Cephalalgia ◽  
1992 ◽  
Vol 12 (4) ◽  
pp. 206-213 ◽  
Author(s):  
Marinus O Den Boer ◽  
JAE Somers ◽  
PR Saxena

The haemodynamic effects of sumatriptan, a 5-HT 1 -like receptor agonist, and ergotamine, an agonist at a-adrenergic, dopamine as well as 5-HT receptors, were compared using intracardiac injection of radioactive microspheres of different sizes in anaesthetized pigs. Ergotamine (0.02 mg-kg-1 ) and sumatriptan (0.3 mg. kg-1 ) decreased systemic vascular conductance and cardiac output. Only ergo-famine raised arterial blood pressure. Both sumatriptan and ergotamine decreased arteriovenous anastomotic, but not capillary, blood flow in the head and body skin. Arteriovenous and capillary blood flow in the dura mater and nasal mucosa and capillary blood flow in the brain, kidneys, adrenals, intestine, heart, spleen and muscle remained unchanged. However, kidney conductance was decreased by both drugs, spleen conductance by sumatriptan and heart, liver and adrenal conductances were decreased by ergotamine. Thus, both sumatriptan and ergotamine constricted arteriovenous anastomoses in the skin, but not in the dura mater or nasal mucosa. Ergotamine constricted the vasculature more than sumatriptan, although both drugs may differentially decrease vascular conductances in some organs.


Sign in / Sign up

Export Citation Format

Share Document