Food and Habitat Utilization by Juvenile Salmonids in the Campbell River Estuary

1987 ◽  
Vol 44 (6) ◽  
pp. 1233-1246 ◽  
Author(s):  
J. Stevenson Macdonald ◽  
I. K. Birtwell ◽  
G. M. Kruzynski

Salmonid behaviour and abundance in several microhabitats within the Campbell River estuary was observed monthly, from May to July, by divers using snorkels and face masks. Concurrent vertical profiles of physical and biological parameters at each microhabitat were taken to characterize habitats frequented by the fish. Data were collected at high and low tide to record behavioural reactions to changes in water velocity, salinity, and temperature associated with tidal height and salt wedge intrusion. Samples of plankton collected at each microhabitat were compared with stomach contents of salmonids caught nearby to determine if interspecific differences in diet could be correlated with differences in the habitats they occupied. Fish occurred in loose assemblages, aligned with the current, feeding near estuarine banks. As water velocities increased with the ebbing tide, the fish concentrated in a shear region near the mouth of a slough and behind large rocks and submerged vegetation. At both high and low tide, larger coho (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha) (usually hatchery reared) were in deeper, frequently more saline water and further from shore than the smaller conspecifics. Hatchery chinook, however, were also seen in sloughs where water velocity was low. Marine influence as reflected in plankton composition and salmonid diet was greater in the outer estuary and in the deep salt water that intrudes the inner regions of the estuary. Differences in the habitats occupied by the fish were reflected in differences in their diets.

2004 ◽  
Vol 61 (12) ◽  
pp. 2425-2439 ◽  
Author(s):  
Charles R Bacon ◽  
Peter K Weber ◽  
Kimberly A Larsen ◽  
Reginald Reisenbichler ◽  
John A Fitzpatrick ◽  
...  

Strontium isotope and Sr/Ca ratios measured in situ by ion microprobe along radial transects of otoliths of juvenile chinook salmon (Oncorhynchus tshawytscha) vary between watersheds with contrasting geology. Otoliths from ocean-type chinook from Skagit River estuary, Washington, had prehatch regions with 87Sr/86Sr ratios of ~0.709, suggesting a maternally inherited marine signature, extensive fresh water growth zones with 87Sr/86Sr ratios similar to those of the Skagit River at ~0.705, and marine-like 87Sr/86Sr ratios near their edges. Otoliths from stream-type chinook from central Idaho had prehatch 87Sr/86Sr ratios ≥0.711, indicating that a maternal marine Sr isotopic signature is not preserved after the ~1000- to 1400-km migration from the Pacific Ocean. 87Sr/86Sr ratios in the outer portions of otoliths from these Idaho juveniles were similar to those of their respective streams (~0.708–0.722). For Skagit juveniles, fresh water growth was marked by small decreases in otolith Sr/Ca, with increases in Sr/Ca corresponding to increases in 87Sr/86Sr with migration into salt water. Otoliths of Idaho fish had Sr/Ca radial variation patterns that record seasonal fluctuation in ambient water Sr/Ca ratios. The ion microprobe's ability to measure both 87Sr/86Sr and Sr/Ca ratios of otoliths at high spatial resolution in situ provides a new tool for studies of fish rearing and migration.


2009 ◽  
Vol 87 (10) ◽  
pp. 920-927 ◽  
Author(s):  
P. Rosengrave ◽  
R. Montgomerie ◽  
V. J. Metcalf ◽  
K. McBride ◽  
N. J. Gemmell

Sperm traits of externally fertilizing fish species are typically measured in fresh (or salt) water, even though the spawning environment of their ova contains ovarian fluid. In this study, we measured sperm traits of Chinook salmon ( Oncorhynchus tshawytscha (Walbaum in Artedi, 1792)) in both fresh water and dilute ovarian fluid at 10 and 20 s postactivation, using a computer-assisted sperm analysis system. Spermatozoa swam faster, and had both higher percent motility and a straighter path trajectory for a longer period of forward motility when activated in ovarian fluid compared with activation in fresh water. Comparing sperm activity of 10 males in water versus ovarian fluid, we found a weak but significant correlation for sperm swimming speed at 10 s postactivation (r = 0.34, p = 0.01), but not for any other sperm traits measured. Most important, across males, mean sperm swimming speed in water accounted for <10% of the observed variation in mean sperm swimming speed in ovarian fluid. Thus, we argue that sperm traits measured in fresh water are not particularly relevant to those same traits during normal spawning in this species. We suggest that sperm performance measured in fresh water should be used with caution when comparing the potential for individual males to fertilize ova, especially in studies of sperm competition in externally fertilizing species.


2013 ◽  
Vol 97 (6) ◽  
pp. 731-740 ◽  
Author(s):  
Thomas P. Quinn ◽  
J. Anne Shaffer ◽  
Justin Brown ◽  
Nicole Harris ◽  
Chris Byrnes ◽  
...  

1986 ◽  
Vol 43 (7) ◽  
pp. 1386-1397 ◽  
Author(s):  
C. D. Levings ◽  
C. D. McAllister ◽  
B. D. Chang

From March 1982 to December 1983, juvenile chinook salmon (Oncorhynchus tshawytscha) were sampled by beach-seine in the Campbell River estuary and adjacent waters of Discovery Passage in order to examine estuarine use by wild and hatchery stocks. Wild juvenile chinook entered the estuary as migrant fry and were present in the estuarine zone mainly in late April to June, in the transition zone in mid-May to July, and in the marine zone in July. Hatchery fish were released from early May to early July. Maximum catches of wild stocks were similar in the estuarine and transition zones, while the maximum catches of most hatchery stocks were higher in the transition zone. For both wild and hatchery chinook, catches in the marine zone were much lower than in the estuarine and transition zones. Wild fry resided in the estuary for 40–60 d, while most hatchery fish used the estuary for about one-half this period. Wild stocks showed a relatively constant rate of increase in mean size from May to September. Higher rates of increase in the mean size of hatchery fish were shown by groups with earlier release dates and smaller mean sizes. Residency time and growth rates for wild fish were comparable with those observed in an estuary without hatchery fish. Potential for interaction between wild and hatchery stocks was greatest in the transition zone, where hatchery fish were most abundant and because hatchery releases occurred when catches of wild fish were highest in this foreshore area.


2010 ◽  
Vol 67 (3) ◽  
pp. 524-533 ◽  
Author(s):  
David K. Hering ◽  
Daniel L. Bottom ◽  
Earl F. Prentice ◽  
Kim K. Jones ◽  
Ian A. Fleming

A novel application of full-duplex passive integrated transponder (PIT) tag technology was used to investigate movements of individual subyearling Chinook salmon ( Oncorhynchus tshawytscha ; fork length ≥ 60 mm) into and out of tidally flooded salt marsh habitat in the Salmon River estuary, Oregon, USA. PIT interrogation was effective, with mean tag detection ≥ 92%. Salmon movement peaked late during both flood and ebb tide periods, indicating that salmon did not drift passively. Most movements were in the direction of tidal currents, but 20% of individuals entered the channel against the ebbing tide. Individuals occupied the intertidal channel for a median 4.9 h and as long as 8.9 h per tidal cycle, and few were detected moving when water depth was <0.4 m. Some individuals used the channel on multiple successive tidal cycles, and others entered intermittently over periods of up to 109 days. Using an individual-based approach, we characterized diversity of juvenile Chinook salmon behavior within a marsh channel, providing insight into the value of such habitats for conservation and restoration of salmon populations.


1988 ◽  
Vol 45 (8) ◽  
pp. 1366-1377 ◽  
Author(s):  
J. Stevenson Macdonald ◽  
Colin D. Levings ◽  
Carey D. McAllister ◽  
U. H. M. Fagerlund ◽  
J. R. McBride

In late April of 1983, 1984, and 1985, 140 000 marked chinook salmon (Oncorhynchus tshawytscha) smolts (2–4 g) were transported by helicopter from Quinsam Hatchery to four release sites near Campbell River, B.C. (river, estuarine, transition, and marine), in an experiment to test the importance of estuarine residency to chinook survival. At the marine site, fish were released directly into seawater. These fish had high cortisol levels and larger interrenal nuclear diameters than those at the estuarine site, indicating a transitory stress response to seawater exposure. Nevertheless, there was little direct mortality due to stress or osmoregulatory shock at any of the release sites. Marine-released fish were exposed to more bird and fish predators. Mortality of caged chinook was higher at the marine location than at all other sites despite seawater challenge tests indicating that the chinook were smolted and "ready for sea." Beach seine data obtained biweekly for 4 mo after the releases showed that fish released directly into marine waters rarely dispersed to the Campbell River estuary. Fish released immediately adjacent to the mouth of the estuary (transition zone) had the widest immediate dispersal pattern, with many of them returning to the estuary. Estuarine zone fish displayed the most restricted distribution. Fish released to the river and estuary remained in the sampling area for a longer period (34–47 d) than those released in the marine or transition zone (20–23 d).


2000 ◽  
Vol 57 (8) ◽  
pp. 1636-1646 ◽  
Author(s):  
David R Geist ◽  
Julia Jones ◽  
Christopher J Murray ◽  
Dennis D Dauble

We improved our predictions of fall chinook salmon (Oncorhynchus tshawytscha) habitat use by analyzing spawning habitat at the spatial scale of redd clusters. Spatial point pattern analyses indicated that redd clusters in the Hanford Reach, Columbia River, were consistent in their location from 1994 to 1995. Redd densities were 16.1 and 8.9 redds·ha-1 in 1994 and 1995, respectively, and individual redds within clusters were usually less than 30 m apart. Pattern analysis also showed strong evidence that redds were uniformly distributed within the clusters where interredd distances ranged from 2 to 5 m. Redd clusters were found to occur predominantly where water velocity was between 1.4 and 2 m·s-1, water depth was 2-4 m, and lateral slope of the riverbed was less than 4%. This habitat use represented a narrower range of use than previously reported for adult fall chinook salmon. Logistic regression analysis determined that water velocity and lateral slope were the most significant predictors of redd cluster location over a range of river discharges. Overestimates of available spawning habitat lead to nonachievable goals for protecting and restoring critical salmonid habitat. Better predictions of spawning habitat may be possible if cluster-specific characteristics are used.


Sign in / Sign up

Export Citation Format

Share Document