Toxicity of Trace Metal Mixtures to Alevin Rainbow Trout (Oncorhynchus mykiss) and Larval Fathead Minnow (Pimephales promelas) in Soft, Acidic Water

1993 ◽  
Vol 50 (7) ◽  
pp. 1348-1355 ◽  
Author(s):  
B. E. Hickie ◽  
N. J. Hutchinson ◽  
D. G. Dixon ◽  
P. V. Hodson

The acute lethality of a fixed-ratio mixture of Al, Mn, Fe, Ni, Zn, Cu, and Pb (75:60:60:12:12:6:6 μg∙L−1 = 1.0 acid lake concentration or ALC, representative of Ontario lakes acidified to pH 5.8) was examined with alevin rainbow trout (Oncorhynchus mykiss) and larval fathead minnow (Pimephales promelas). All testing was done in extremely soft, acidic water (2.5 mg Ca∙L−1; pH 4.6–5.8). For the acid-tolerant trout alevins (144-h LC50 = pH 4.32), median lethal metal mixture levels at pH 5.8 were 5.0 ALC. Toxicity of the mixture increased at lower pHs, with a median lethal threshold of 1.0 ALC at pH 4.9. A mixture of Al, Zn, and Cu was equivalent in toxicity to the full mixture; mixture toxicity was caused by Cu alone at pH 5.8 and by Al alone at pH 4.9. For the acid-sensitive fathead minnow larvae (144-h LC50 = pH 5.54), the mixture of metals typical of lakes acidified to pH 5.8 was lethal (LC50 = 0.84 ALC); again, toxicity was associated with Al, Cu, and Zn. This research implies that Cu could be an important factor contributing to the demise of acid-sensitive fish at pHs above those associated with increased Al solubility and toxicity.


1997 ◽  
Vol 54 (6) ◽  
pp. 1387-1390 ◽  
Author(s):  
Michael W Greene ◽  
Richard M Kocan

Ethylene glycol (EG) and thiram, an aldehyde dehydrogenase inhibitor, are components of the seed protectant Vitavax-200. EG is a common solvent, thought to be nontoxic, whereas thiram, a dithiocarbamate known to be toxic to fish, is an active ingredient in Vitavax-200. When the\i toxicities of EG and thiram were investigated individually and as a mixture in rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas), a strong synergistic toxic effect was observed. Using a constant sublethal concentration of thiram, a 5- to 19-fold increase and a 2- to 2.4-fold increase in EG toxicity was observed in fathead minnow and rainbow trout, respectively. The toxicity of EG following pretreatment of rainbow trout with pyrazole, an alcohol dehydrogenase inhibitor, was decreased by 22% whereas pretreatment with cyanamide, an aldehyde dehydrogenase inhibitor, increased toxicity 3.4-fold. The results indicate that thiram inhibits the complete metabolism of EG, resulting in the buildup of a toxic aldehyde intermediate and increasing the toxicity of EG.







1995 ◽  
Vol 52 (1) ◽  
pp. 13-22 ◽  
Author(s):  
R. D. Handy

Rainbow trout (Oncorhynchus mykiss), goldfish (Carassius auratus), and the fathead minnow (Pimephales promelas) were exposed continuously or intermittently (24-h exposure: 24-h recovery) to a nominal peak concentration of 3 μg∙L−1 mercuric chloride for 120 h. There were no differences in the target organs or the distribution of the toxicant within internal organs between the two exposure regimes. Mercury concentrations in the tissues of intermittently exposed fish were less than those of continuously exposed fish. The lower mercury concentrations in the intermittently exposed groups arose from reduced or negligible accumulation during recovery periods rather than mercury excretion. The accumulation of mercury during intermittent exposure is roughly proportional to the exposure duration, and could therefore be predicted from a continuous exposure of equivalent total exposure duration. This proportionality exists when (1) peak concentrations of mercury are the same in both regimes, and (2) the recovery periods are short compared with the biological half-life for mercury.





Sign in / Sign up

Export Citation Format

Share Document