Comparison of intermittent and continuous exposure to mercuric chloride in rainbow trout (Oncothynchus mykiss), goldfish (Carassius auratus), and the fathead minnow (Pimephales ptomelas)

1995 ◽  
Vol 52 (1) ◽  
pp. 13-22 ◽  
Author(s):  
R. D. Handy

Rainbow trout (Oncorhynchus mykiss), goldfish (Carassius auratus), and the fathead minnow (Pimephales promelas) were exposed continuously or intermittently (24-h exposure: 24-h recovery) to a nominal peak concentration of 3 μg∙L−1 mercuric chloride for 120 h. There were no differences in the target organs or the distribution of the toxicant within internal organs between the two exposure regimes. Mercury concentrations in the tissues of intermittently exposed fish were less than those of continuously exposed fish. The lower mercury concentrations in the intermittently exposed groups arose from reduced or negligible accumulation during recovery periods rather than mercury excretion. The accumulation of mercury during intermittent exposure is roughly proportional to the exposure duration, and could therefore be predicted from a continuous exposure of equivalent total exposure duration. This proportionality exists when (1) peak concentrations of mercury are the same in both regimes, and (2) the recovery periods are short compared with the biological half-life for mercury.


1994 ◽  
Vol 72 (3) ◽  
pp. 423-426 ◽  
Author(s):  
Paul W. Webb ◽  
Hongbao Zhang

We measured reaction distance, escape velocity, and the apparent looming threshold (ALT) of heat-shocked goldfish (Carassius auratus) attacked by trout (Oncorhynchus mykiss). We tested fish at the acclimation temperature of 15 °C after heat-shocking prey for 2 min at temperatures ranging from 34 to 39 °C. Escape speeds were unaffected by heat shock. Reaction distance decreased from about 21 cm for fish shocked at 35 °C to about 6 cm for those shocked at 39 °C. ALT increased from 0.2 rad∙s−1 for controls to 0.4 rad∙s−1 for goldfish heat-shocked at 39 °C. The elusiveness of prey, E, was measured as the number of attacks required per prey capture. E was related to ALT as: E = 1.29 (±0.47)∙ALT−0.82(±0.25) (mean (±2 SE)). Factors that decrease responsiveness of prey have large effects on the ability of prey to avoid predators.



1973 ◽  
Vol 30 (2) ◽  
pp. 317-320 ◽  
Author(s):  
Daniel W. Coble

Northern pike (Esox lucius) were put in tanks with fantail and regular-tail goldfish (Carassius auratus) or with goldfish of different colors. Physical appearance of prey did not affect the pike’s feeding. In experiments in plastic pools four species of fish were exposed to predation by northern pike that were satiated or deprived of food for either 2 or 4 weeks. The pike always selected carp (Cyprinus carpio) and fathead minnow (Pimephales promelas) over green sunfish (Lepomis cyanellus) and bluegill (L. macrochirus).



1997 ◽  
Vol 54 (6) ◽  
pp. 1387-1390 ◽  
Author(s):  
Michael W Greene ◽  
Richard M Kocan

Ethylene glycol (EG) and thiram, an aldehyde dehydrogenase inhibitor, are components of the seed protectant Vitavax-200. EG is a common solvent, thought to be nontoxic, whereas thiram, a dithiocarbamate known to be toxic to fish, is an active ingredient in Vitavax-200. When the\i toxicities of EG and thiram were investigated individually and as a mixture in rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas), a strong synergistic toxic effect was observed. Using a constant sublethal concentration of thiram, a 5- to 19-fold increase and a 2- to 2.4-fold increase in EG toxicity was observed in fathead minnow and rainbow trout, respectively. The toxicity of EG following pretreatment of rainbow trout with pyrazole, an alcohol dehydrogenase inhibitor, was decreased by 22% whereas pretreatment with cyanamide, an aldehyde dehydrogenase inhibitor, increased toxicity 3.4-fold. The results indicate that thiram inhibits the complete metabolism of EG, resulting in the buildup of a toxic aldehyde intermediate and increasing the toxicity of EG.



1993 ◽  
Vol 50 (7) ◽  
pp. 1348-1355 ◽  
Author(s):  
B. E. Hickie ◽  
N. J. Hutchinson ◽  
D. G. Dixon ◽  
P. V. Hodson

The acute lethality of a fixed-ratio mixture of Al, Mn, Fe, Ni, Zn, Cu, and Pb (75:60:60:12:12:6:6 μg∙L−1 = 1.0 acid lake concentration or ALC, representative of Ontario lakes acidified to pH 5.8) was examined with alevin rainbow trout (Oncorhynchus mykiss) and larval fathead minnow (Pimephales promelas). All testing was done in extremely soft, acidic water (2.5 mg Ca∙L−1; pH 4.6–5.8). For the acid-tolerant trout alevins (144-h LC50 = pH 4.32), median lethal metal mixture levels at pH 5.8 were 5.0 ALC. Toxicity of the mixture increased at lower pHs, with a median lethal threshold of 1.0 ALC at pH 4.9. A mixture of Al, Zn, and Cu was equivalent in toxicity to the full mixture; mixture toxicity was caused by Cu alone at pH 5.8 and by Al alone at pH 4.9. For the acid-sensitive fathead minnow larvae (144-h LC50 = pH 5.54), the mixture of metals typical of lakes acidified to pH 5.8 was lethal (LC50 = 0.84 ALC); again, toxicity was associated with Al, Cu, and Zn. This research implies that Cu could be an important factor contributing to the demise of acid-sensitive fish at pHs above those associated with increased Al solubility and toxicity.



1996 ◽  
Vol 199 (7) ◽  
pp. 1515-1521 ◽  
Author(s):  
P Schwarzbaum ◽  
R Bernabeu ◽  
G Krumschnabel ◽  
C Wieser

Protein kinase C (PKC) and Na+/K+-ATPase in hepatocytes from the anoxia-tolerant goldfish (Carassius auratus) and the anoxia-intolerant rainbow trout (Oncorhynchus mykiss) were studied to determine their role in the anoxic response of these cells. PKC and Na+/K+-ATPase activities were measured for up to 90 min in the absence (normoxia) and presence (chemical anoxia) of 2 mmol l-1 sodium cyanide. PKC activity of normoxic cells from both species remained constant for the entire experimental period. Addition of cyanide had no effect on PKC activity of trout cells, which was maintained at 25 % of maximal PKC activity. In goldfish hepatocytes, PKC activity remained constant at 56 % of maximal PKC activity for 30 min but fell to 27 % after 90 min of anoxic exposure. ATPase activity was measured in hepatocytes exposed to 100 nmol l-1 phorbol-12,13-dibutyrate (PdBu), a treatment which enhanced PKC activity to its maximum level. In trout cells, there was no significant change in Na+/K+-ATPase activity whereas in goldfish hepatocytes a significant increase to about 150 % of the respective controls was observed. On the basis of the experimental evidence that in hepatocytes of goldfish (1) PKC and Na+/K+-ATPase activities decreased in parallel during chemical anoxia and (2) a stimulation of PKC activity by PdBu increased Na+/K+-ATPase activity, we postulate that PKC activity in goldfish, but not in trout, may be implicated in the Na+/K+-ATPase inhibition observed under anoxia.



1995 ◽  
Vol 73 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Robert J. Omeljaniuk

Dopamine, a catecholamine neurohormone, modulates pituitary hormone release in teleost fishes and other vertebrates. The existence and binding parameters of a pituitary dopamine–neuroleptic receptor from trout were examined and compared with those from goldfish. Pituitary homogenate was incubated with [3H]spiperone (D2 antagonist) under several experimental paradigms; incubations were terminated by filtration and bound 3H radioactivity was assessed by liquid scintillation spectroscopy. Specific binding of [3H]spiperone was tissue dependent. Equilibrium displacement analyses using domperidone (D2 antagonist) indicated a single class of binding site (LIGAND) with Kd = 2.49 ± 0.89 μM and a capacity of 3.10 ± 0.45 nmol/mg protein; the goldfish Kd and capacity were both significantly (p < 0.05) larger: Kd = 4.63 ± 0.30 μM and capacity = 20.66 ± 2.03 nmol/mg protein. The Kd and capacity for the trout pars distalis (2.45 ± 0.33 μM and 3.27 ± 0.24 nmol/mg protein, respectively) did not differ significantly (p < 0.05) from that of the neurointermediate lobe (2.50 ± 0.08 μM and 3.58 ± 0.56 nmol/mg protein, respectively). Dopamine D2 receptor ligands differentially displaced [3H]spiperone from the trout pituitary, while D1 ligands, a D4 ligand, and a 5-hydroxytryptamine (5HT2) receptor antagonist had only small nonspecific effects. Comparison of the trout and goldfish pituitary dopamine–neuroleptic receptor indicates conservation of receptor affinity (Kd); however, differences in receptor numbers and in the distribution of receptors between the pars distalis and neurointermediate lobe in the two species may be due in part to species or developmental differences, and may reflect differences in the role(s) and degrees of influence of dopamine in these fishes.Key words: pituitary, dopamine, receptor, rainbow trout, goldfish.



1984 ◽  
Vol 41 (1) ◽  
pp. 157-165 ◽  
Author(s):  
P. W. Webb

Experiments with teleosts attacking fathead minnow (Pimephales promelas) prey showed that piscivore locomotor tactics vary with body/fin morphology. Predators were tiger musky (Esox sp.), rainbow trout (Salmo gairdneri), smallmouth bass (Micropterus dolomieui), and rock bass (Ambloplites rupestris) representing several morphological series from more flexible to more rigid bodies, elongate to gibbose bodies, soft-rayed to acanthopterygian median/paired fin patterns, and more to less myotomal muscle. Two predicted optimal tactics were common to the four predators: (1) strike at the prey center of mass and (2) strike prey from the side. Other tactics varied among the predators. Tiger musky always used S-start fast-starts, rainbow trout used steady swimming with body/caudal fin movements, and smallmouth and rock bass used steady swimming with body/caudal fin movements for closer prey and started attacks on distant prey with pectoral propulsion. Tiger musky overshot prey, this being prevented by the use of paired fins as brakes in the two centrarchids. Rainbow trout regularly chased prey, but effective braking coupled with suction feeding appeared to make chases less necessary for smallmouth and rock bass. Speeds in strikes increased according to rock bass < smallmouth bass < rainbow trout < tiger musky consistent with expectations based on morphology. Each species used attack speeds likely to minimize closure times, which is the general optimal strategy for interceptors. Tiger musky attacked at maximum speeds but rainbow trout and smallmouth and rock bass attacked at speeds very much lower than their maximum potential. The prey has a low response threshold for these three species compared with tiger musky when high speeds and associated large prey reaction distances would increase closure times.





Sign in / Sign up

Export Citation Format

Share Document