Another exotic mollusc in the Laurentian Great Lakes: the New Zealand native Potamopyrgus antipodarum (Gray 1843) (Gastropoda, Hydrobiidae)

1997 ◽  
Vol 54 (4) ◽  
pp. 809-814 ◽  
Author(s):  
D T Zaranko ◽  
D G Farara ◽  
F G Thompson

In 1991, the hydrobiid snail Potamopyrgus antipodarum (Gray 1843), native to New Zealand, was found 1 km offshore Wilson, New York, in Lake Ontario. This is the first known occurrence of the snail in eastern North America. Densities of P. antipodarum have increased since its discovery, and the snail is expected to spread quickly throughout the Great Lakes area. The biofouling potential of P. antipodarum is probably low; however, its most serious threat may be resource competition with native molluscs. This species was probably introduced in ballast water from transoceanic vessels, thus increasing the list of nonindigenous aquatic organisms introduced into the Great Lakes since the 1800s to 140 different organisms. The risk of other species invasions into the Great Lakes is still possible, despite the now mandatory ballast water regulations.

2003 ◽  
Vol 60 (6) ◽  
pp. 740-756 ◽  
Author(s):  
Igor A Grigorovich ◽  
Robert I Colautti ◽  
Edward L Mills ◽  
Kristen Holeck ◽  
Albert G Ballert ◽  
...  

Since completion of the St. Lawrence Seaway in 1959, at least 43 nonindigenous species (NIS) of animals and protists have established in the Laurentian Great Lakes, of which ~67% were attributed to discharge of ballast water from commercial ships. Twenty-three NIS were first discovered in four "hotspot" areas with a high representation of NIS, most notably the Lake Huron – Lake Erie corridor. Despite implementation of the voluntary (1989, Canada) and mandatory (1993, U.S.A.) ballast water exchange (BWE) regulations, NIS were discovered at a higher rate during the 1990s than in the preceding three decades. Here we integrate knowledge of species' invasion histories, shipping traffic patterns, and physicochemical factors that constrain species' survivorship during ballast-mediated transfer to assess the risk of future introductions to the Great Lakes. Our risk-assessment model identified 26 high-risk species that are likely to survive intercontinental transfer in ballast tanks. Of these, 10 species have already invaded the Great Lakes. An additional 37 lower-risk species, of which six have already invaded, show some but not all attributes needed for successful introduction under current BWE management. Our model indicates that the Great Lakes remain vulnerable to ship-mediated NIS invasions.


2020 ◽  
Vol 42 (3) ◽  
pp. 255-264
Author(s):  
Andrew J Bramburger ◽  
Euan D Reavie ◽  
Gerald V Sgro ◽  
Lisa R Estepp ◽  
Victoria L Shaw Chraïbi ◽  
...  

Abstract The Laurentian Great Lakes are among the planet’s fastest-warming lakes. Recent paleolimnological studies have shown changes in the diatom community of the system, including shifts towards taxa characteristic of strongly stratified systems and ongoing cell-size diminution. Relationships between species’ cell size and establishment in—or extirpation from—the system have not been addressed. Examining patterns of establishment and extirpation provides insight into the effects of multiple stressors at the ecosystem scale. We evaluate the timing of the establishment or extirpation of diatom taxa from fossil records post-European settlement within the Great Lakes as a function of cell size. Relationships between establishment or extirpation date and cell size were not random, and were best expressed as cubic curves. Generally, large taxa became established early in the record, while establishments of smaller taxa continued apace until the late 20th century. Extirpations of taxa of all sizes accelerated in the late 20th and early 21st centuries, and large-celled taxa were disproportionately extirpated over the last two decades. We discuss the implications of these relationships on the overall cell-size characteristics of the community, and consider the influences of propagule pressure, nutrient status, species invasions, and climate change upon diatom establishment and extirpation.


1993 ◽  
Vol 50 (10) ◽  
pp. 2086-2093 ◽  
Author(s):  
A. Locke ◽  
D. M. Reid ◽  
H. C. van Leeuwen ◽  
W.G. Sprules ◽  
J. T. Carlton

During May–December 1990 and March–May 1991, 546 foreign ocean-going vessels entered the Laurentian Great Lakes and upper St. Lawrence River, areas protected by the Great Lakes Ballast Water Control Guidelines. Between 88 and 94% of the vessels exchanged their ballast water with seawater as required by the guidelines. Living representatives of 11 invertebrate phyla were sampled from ballast tanks. Between 14 and 33% of ships that exchanged freshwater ballast in midocean carried living freshwater-tolerant zooplankton at the time of entry to the Seaway, although these included many taxa already found in the Great Lakes. Four freshwater-tolerant zooplankton species that were identified as living specimens in ballast water have apparently not been recorded from the Great Lakes. Voluntary ballast water controls reduced but did not eliminate the risk of species invasion, since some ships did not comply with the guidelines, and even ships that did exchange ballast water could introduce viable freshwater-tolerant organisms into the Great Lakes. About half of the ballast water carried into the Seaway by ocean-going vessels and lakers each year originates from the St. Lawrence River, portions of which are not yet protected by any ballast controls.


2008 ◽  
Vol 65 (3) ◽  
pp. 549-553 ◽  
Author(s):  
Janet W Reid ◽  
Patrick L Hudson

The four species of freshwater copepod crustaceans found in ballast water or sediments in ships and characterized as “nonindigenous” to the Laurentian Great Lakes region by Drake and Lodge (Can. J. Fish. Aquat. Sci. 64: 530–538 (2007)) are all widespread, North American natives. Drake and Lodge’s use of these native species to estimate the size of the “source pool” of the richness of potential invasive species resulted in an overestimation of its size. We list the fresh- and brackish-water species of copepods found in or on ships in the Great Lakes and discuss taxonomic and other questions pertaining to some of them. We suggest that Skistodiaptomus pallidus, Cyclops strenuus, Salmincola lotae, Nitokra incerta, and Onychocamptus mohammed be removed from the current list of nonindigenous copepod and branchiuran species established in the Great Lakes system, leaving seven species: Eurytemora affinis, Megacyclops viridis, Neoergasilus japonicus, Heteropsyllus nunni, Nitokra hibernica, Schizopera borutzkyi, and Argulus japonicus.


Author(s):  
John Lekki ◽  
R. Anderson ◽  
Q.-V. Nguyen ◽  
J. Demers ◽  
J. Flatico ◽  
...  

2017 ◽  
Author(s):  
John W. Johnston ◽  
◽  
Erin P. Argyilan ◽  
Steve J. Baedke ◽  
Sean Morrison ◽  
...  

Author(s):  
Edward S. Rutherford ◽  
Hongyan Zhang ◽  
Yu‐Chun Kao ◽  
Doran M. Mason ◽  
Ali Shakoor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document