Simultaneous painting of three genomes in hexaploid wheat by BAC-FISH

Genome ◽  
2004 ◽  
Vol 47 (5) ◽  
pp. 979-987 ◽  
Author(s):  
Peng Zhang ◽  
Wanlong Li ◽  
Bernd Friebe ◽  
Bikram S Gill

Fluorescence in situ hybridization (FISH) is widely used in the physical mapping of genes and chromosome landmarks in plants and animals. Bacterial artificial chromosomes (BACs) contain large inserts, making them amenable for FISH mapping. In our BAC-FISH experiments, we selected 56 restriction fragment length polymorphism (RFLP)-locus-specific BAC clones from the libraries of Triticum monococcum and Aegilops tauschii, which are the A- and D-genome donors of wheat (Triticum aestivum, 2n = 6x = 42), respectively. The BAC clone 676D4 from the T. monococcum library contains a dispersed repeat that preferentially hybridizes to A-genome chromosomes, and two BAC clones, 9I10 and 9M13, from the Ae. tauschii library contain a dispersed repeat that preferentially hybridizes to the D-genome chromosomes. These repeats are useful in simultaneously discriminating the three different genomes in hexaploid wheat, and in identifying intergenomic translocations in wheat or between wheat and alien chromosomes. Sequencing results show that both of these repeats are transposable elements, indicating the importance of transposable elements, especially retrotransposons, in the genome evolution of wheat.Key words: bacterial artificial chromosome (BAC), fluorescence in situ hybridization (FISH), transposable elements (TEs), wheat, Triticum aestivum.

Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 489-494 ◽  
Author(s):  
Yasuhiko Mukai ◽  
Yumiko Nakahara ◽  
Maki Yamamoto

Common wheat, Triticum aestivum, is an allohexaploid species consisting of three different genomes (A, B, and D). The three genomes were simultaneously discriminated with different colors. Biotinylated total genomic DNA of the diploid A genome progenitor Triticum urartu, digoxigenin-labeled total genomic DNA of the diploid D genome progenitor Aegilops squarrosa, and nonlabeled total genomic DNA of one of the possible B genome progenitors Ae. speltoides were hybridized in situ to metaphase chromosome spreads of Triticum aestivum cv. Chinese Spring. For detection, only two fluorochromes, fluorescein and rhodamine, were used. The A, B, and D genomes were simultaneously detected by their yellow, brown, and orange fluorescence, respectively. The genomic fluorescence in situ hybridization pattern of chromosome 4A of cv. Chinese Spring wheat showed that the distal 32% of the long arm was derived from a B genome chromosome. Furthermore, by using two highly repeated sequence probes, pSc 119.2 and pAsl, and two fluorochromes simultaneously, we were able to identify all B and D genome chromosomes and chromosomes 1A, 4A, and 5A of wheat.Key words: common wheat, in situ hybridization, multicolor fluorescence.


Genome ◽  
1995 ◽  
Vol 38 (5) ◽  
pp. 946-950 ◽  
Author(s):  
Juan Zhang ◽  
Bernd Friebe ◽  
Bikram S. Gill

Genomic in situ hybridization to somatic metaphase chromosomes of hexaploid wheat cv. Chinese Spring using biotinylated maize genomic DNA as a probe revealed the existence of amplified maize DNA sequences in five pairs of chromosomes. The in situ hybridization sites were located on chromosomes 1A, 7A, 2B, 3B, and 7B. One pair of in situ hybridization sites was also observed in hexaploid oat. The locations and sizes of in situ hybridization sites varied among progenitor species.Key words: Triticum aestivum, Zea mays, shared DNA sequences, genomic in situ hybridization.


Genome ◽  
2014 ◽  
Vol 57 (9) ◽  
pp. 469-472 ◽  
Author(s):  
Xiaomei Luo ◽  
Haiqin Zhang ◽  
Houyang Kang ◽  
Xing Fan ◽  
Yi Wang ◽  
...  

Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.


Genome ◽  
1999 ◽  
Vol 42 (6) ◽  
pp. 1194-1200 ◽  
Author(s):  
M J González ◽  
A Cabrera

Total genomic Hordeum chilense DNA probe was hybridized to somatic chromosome spreads of Triticum aestivum 'Chinese Spring' and to four advanced tritordeum lines, the latter being the fertile amphiploid between H. chilense and durum wheat (2n = 6x = 42, AABBHchHch). The probe hybridized strongly to the B-genome chromosomes and to one or two bands on the A-genome chromosomes present in both wheat and tritordeum alloploids. Bands on chromosomes 1D, 2D, and 7D from hexaploid wheat were also detected. Genomic H. chilense DNA probe identified 16 chromosome pairs of the chromosome complement of hexaploid wheat and all A- and B-genome chromosomes present in the tritordeum amphiploids. The in situ hybridization patterns observed correspond to those previously reported in wheat by both N-banding and in situ hybridization with the GAA-satellite sequence (Pedersen and Langridge 1997), allowing the identification of these chromosomes. Variation among the tritordeum amphiploids for hybridization sites on chromosomes 2A, 4A, 6A, 7A, 4B, 5B, and 7B was observed. Despite of this polymorphism, all lines shared the general banding pattern. When used as probe, total H. chilense genomic DNA labeled the H. chilense chromosomes over their lengths allowing the identification of 14 H. chilense chromosomes present in the tritordeum amphiploids. In addition, chromosome-specific telomeric, interstial, and centromeric hybridization sites were observed. These hybridization sites coincide with N-banded regions in H. chilense allowing the identification of the individual H. chilense chromosomes in one of the amphiploid. The N-banded karyotypes of H. chilense (accessions H1 and H7) are presented.Key words: Hordeum chilense, Triticum aestivum, chromosome identification, in situ hybridization, N-banding.


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 556-563 ◽  
Author(s):  
P P Ueng ◽  
A Hang ◽  
H Tsang ◽  
J M Vega ◽  
L Wang ◽  
...  

A repetitive sequence designated WE35 was isolated from wheat genomic DNA. This sequence consists of a 320-bp repeat unit and represents approximately 0.002% of the total wheat DNA. It is unidirectionally distributed either continuously or discretely in the genome. Ladder-like banding patterns were observed in Southern blots when the wheat genomic DNA was restricted with endonuclease enzymes EcoRI, HincII, NciI, and NdeI, which is characteristic for tandemly organized sequences. Two DNA fragments in p451 were frequently associated with the WE35 repetitive unit in a majority of λ wheat genomic clones. A 475-bp fragment homologous to the 5'-end long terminal repeat (LTR) of cereal retroelements was also found in some λ wheat genomic clones containing the repetitive unit. Physical mapping by fluorescence in situ hybridization (FISH) indicated that one pair of wheat chromosomes could be specifically detected with the WE35 positive probe p551. WE35 can be considered a chromosome-specific repetitive sequence. This repetitive unit could be used as a molecular marker for genetic, phylogenetic, and evolutionary studies in the tribe Triticeae.Key words: repetitive sequence, genomic DNA, Triticum aestivum, fluorescence in situ hybridization, long terminal repeat.


Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 566-572 ◽  
Author(s):  
Scott A Jackson ◽  
Ming Li Wang ◽  
Howard M Goodman ◽  
Jiming Jiang

Arabidopsis thaliana has become a model plant species for genetic studies because of its small genome and short juvenility period. However, the small chromosomes of this species are not suitable for classical cytogenetic studies. Here we demonstrate that the fluorescence in situ hybridization (FISH) technique using extended DNA fibers can be a powerful tool in the physical mapping of the A. thaliana genome. Using a refined fiber-FISH technique we were able to measure DNA clusters as long as 1.71 Mb, more than 1% of the A. thaliana genome. Several small DNA loci, including the telomeres and a dispersed repetitive DNA sequence, mi167, were also analyzed with this technique. The results show that without known adjacent DNA markers such small DNA loci cannot be mapped precisely using fiber-FISH. One of the most difficult obstacles in physical mapping by contig assembly is closing the gaps that are present between adjacent contigs. Currently available molecular techniques are not sufficient to accurately estimate the physical sizes of these gaps. We isolated bacterial artificial chromosome (BAC) clones bordering gaps 2 and 3 on the physical contig map of A. thaliana chromosome II. The BAC clones were used in fiber-FISH analysis and the physical sizes of the two gaps were estimated as 31 kb and more than 500 kb, respectively. Thus, we have demonstrated that fiber-FISH is an efficient technique for determining the physical size of gaps on molecular contig maps. Key words: fluorescence in situ hybridization, DNA fibers, physical mapping, genome analysis.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1082-1090 ◽  
Author(s):  
Winfried Busch ◽  
Regina Martin ◽  
Reinhold G. Herrmann ◽  
Uwe Hohmann

We report on microdissection, cloning and sequence, and Southern and fluorescence in situ hybridization (FISH) analysis of one moderately and one highly amplified repetitive DNA element, pHvMWG2314 and pHvMWG2315, respectively, isolated from barley (Hordeum vulgare L.) chromosome arm 3HL. The pHvMWG2315 sequence hybridizes to all 14 telomeric or subtelomeric regions of the barley chromosomes as determined by FISH. The 50 different hybridization sites that include intercalary signals allow the discrimination of all 14 chromosome arms and the construction of a karyotype of barley. The tandemly repeated subtelomeric element of 331 bp exists in all Triticeae species tested (H. vulgare, Agropyron elongatum, Secale cereale, Triticum tauschii, T. turgidum, and T. aestivum). It is AT rich (66%), exhibits 84% sequence homology to subfragments of the D genome "specific" 1-kb element pAsl of T. tauschii and 75% homology to the interspersed genome-specific DNA sequence pHcKB6 from H. chilense. The repetitive sequence pHvMWG2314 is moderately amplified in barley and highly amplified in hexaploid wheat. The in situ experiments revealed no distinct signals on barley chromosomes, indicating a dispersed character for the sequence. The significance of the results for the identification of chromosomes and chromosome aberrations in FISH experiments are discussed.Key words: karyotype, fluorescence in situ hybridization, FISH, DNA sequencing.


Sign in / Sign up

Export Citation Format

Share Document