Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice

Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Lirui Cheng ◽  
Yun Wang ◽  
Lijun Meng ◽  
Xia Hu ◽  
Yanru Cui ◽  
...  

Effect of genetic background on detection of quantitative trait locus (QTL) governing salinity tolerance (ST) was studied using two sets of reciprocal introgression lines (ILs) derived from a cross between a moderately salinity tolerant japonica variety, Xiushui09 from China, and a drought tolerant but salinity susceptible indica breeding line, IR2061–520–6-9 from the Philippines. Salt toxicity symptoms (SST) on leaves, days to seedling survival (DSS), and sodium and potassium uptake by shoots were measured under salinity stress of 140 mmol/L of NaCl. A total of 47 QTLs, including 26 main-effect QTLs (M-QTLs) and 21 epistatic QTLs (E-QTLs), were identified from the two sets of reciprocal ILs. Among the 26 M-QTLs, only four (15.4%) were shared in the reciprocal backgrounds while no shared E-QTLs were detected, indicating that ST QTLs, especially E-QTLs, were very specific to the genetic background. Further, 78.6% of the M-QTLs for SST and DSS identified in the reciprocal ILs were also detected in the recombinant inbred lines (RILs) from the same cross, which clearly brings out the background effect on ST QTL detection and its utilization in ST breeding. The detection of ILs with various levels of pyramiding of nonallelic M-QTL alleles for ST from Xiushui09 into IR2061-520-6-9 allowed us to further improve the ST in rice.

2014 ◽  
Vol 10 ◽  
pp. P924-P924
Author(s):  
Peng Lei ◽  
Scott Ayton ◽  
Steve Moon ◽  
David Finkelstein ◽  
Ashley I. Bush

2012 ◽  
Vol 94 (5) ◽  
pp. 245-253
Author(s):  
LI-RUI CHENG ◽  
JUN-MIN WANG ◽  
GUOYOU YE ◽  
CHENG-GANG LUO ◽  
JIAN-LONG XU ◽  
...  

SummaryTwo sets of reciprocal introgression lines (ILs) and a population of recombinant inbred lines (RILs) derived from the cross between japonica cultivar Xiushui09 and indica breeding line IR2061-520-6-9 (abbreviated as IR2061) were used to identify QTL for heading date (HD). Phenotyping was conducted in Hainan Island for two winter seasons (2007 and 2009). Nine QTLs were detected in the ILs with Xiushui09 background (XS-ILs), and four of which were repeatedly mapped across 2 years. Five QTLs were identified in the ILs with IR2061 background (IR-ILs), and three of which were commonly detected in 2 years. All commonly detected QTL had the same direction of gene effect. Seven QTL for HD were identified in the RILs in 2009. Only three (25%) QTLs were commonly detected using all the three populations (XS-ILs, IR-ILs and RILs). The number of commonly identified QTLs among populations was related to degree of similarity of their genetic backgrounds, suggesting that the genetic background effect is important for detecting HD QTL. QHd7 and QHd10b stably expressed in different populations and across years thus would be exploited in rice breeding programme. Moreover, lines with both of QHd7 and QHd10b resulted in at least 3 days earlier than lines with only one of them QTL, showing evident pyramiding effect.


Author(s):  
Puneet Kaur Mangat ◽  
Junghyun Shim ◽  
Ritchel B. Gannaban ◽  
Joshua J. Singleton ◽  
Rosalyn B. Angeles-Shim

Abstract Key message Alien introgressions that were captured in the genome of diploid plants segregating from progenies of monosomic alien addition lines of S. lycopersicoides confer novel phenotypes with commercial and agronomic value in tomato breeding. Abstract Solanum lycopersicoides is a wild relative of tomato with a natural adaptation to a wide array of biotic and abiotic challenges. In this study, we identified and characterized diploid plants segregating from the progenies of monosomic alien addition lines (MAALs) of S. lycopersicoides to establish their potential as donors in breeding for target trait improvement in tomato. Molecular genotyping identified 28 of 38 MAAL progenies having the complete chromosome complement of the cultivated tomato parent and limited chromosome introgressions from the wild S. lycopersicoides parent. Analysis of SSR and indel marker profiles identified 34 unique alien introgressions in the 28 MAAL-derived introgression lines (MDILs) in the genetic background of tomato. Conserved patterns of alien introgressions were detected among sibs of MDILs 2, 3, 4 and 8. Across MDILs, a degree of preferential transmission of specific chromosome segments was also observed. Morphologically, the MDILs closely resembled the cultivated tomato more than S. lycopersicoides. The appearance of novel phenotypes in the MDILs that are lacking in the cultivated parent or the source MAALs indicates the capture of novel genetic variation by the diploid introgression lines that can add commercial and agronomic value to tomato. In particular, screening of representative MDILs for drought tolerance at the vegetative stage identified MDIL 2 and MDIL 11III as drought tolerant based on visual scoring. A regulated increase in stomatal conductance of MDIL 2 under drought stress indicates better water use efficiency that allowed it to survive for 7 days under 0% moisture level.


2007 ◽  
Vol 31 (3) ◽  
pp. 458-462 ◽  
Author(s):  
Thomas N. Ferraro ◽  
George G. Smith ◽  
Candice L. Schwebel ◽  
Falk W. Lohoff ◽  
Patrick Furlong ◽  
...  

Multiple quantitative trait locus (QTL) mapping studies designed to localize seizure susceptibility genes in C57BL/6 (B6, seizure resistant) and DBA/2 (D2, seizure susceptible) mice have detected a significant effect originating from midchromosome 5. To confirm the presence and refine the position of the chromosome 5 QTL for maximal electroshock seizure threshold (MEST), reciprocal congenic strains between B6 and D2 mice were created by a DNA marker-assisted backcross breeding strategy and studied with respect to changes in MEST. A genomic interval delimited by marker D5Mit75 (proximal to the acromere) and D5Mit403 (distal to the acromere) was introgressed for 10 generations. A set of chromosome 5 congenic strains produced by an independent laboratory was also studied. Comparison of MEST between congenic and control (parental genetic background) mice indicates that genes influencing this trait were captured in all strains. Thus, mice from strains having D2 alleles from chromosome 5 on a B6 genetic background exhibit significantly lower MEST compared with control littermates, whereas congenic mice harboring B6 chromosome 5 alleles on a D2 genetic background exhibit significantly higher MEST compared with control littermates. Combining data from all congenic strains, we conclude that the gene(s) underlying the chromosome 5 QTL for MEST resides in the interval between D5Mit108 (26 cM) and D5Mit278 (61 cM). Generation of interval-specific congenic strains from the primary congenic strains described here may be used to achieve high-resolution mapping of the chromosome 5 gene(s) that contributes to the large difference in seizure susceptibility between B6 and D2 mice.


1998 ◽  
Vol 88 (2) ◽  
pp. 156-163 ◽  
Author(s):  
F. Lefèvre ◽  
M. C. Goué-Mourier ◽  
P. Faivre-Rampant ◽  
M. Villar

Complete cosegregation for race-specific incompatibility with three Melampsora larici-populina rust races was observed in five F1 hybrid progenies of Populus, with different patterns among the various progenies. A single gene cluster could explain these segregations: one locus with multiple alleles or two tightly linked loci controlling complete resistance to E1 and E3, and two tightly linked loci for E2. The random amplified polymorphic DNA marker OPM03/04_480 was linked to that cluster in all families (<1 cM). This marker accounted for more than 70% of the genetic variation for field resistance in each family (heritability ≈ 0.40). The same marker accounted for up to 64% of the clonal variation for growth in the nursery under natural inoculum pressure; the weak tolerance to rust of F1 interspecific hybrids was attributed to a genetic background effect. Partial resistance was split into epidemiological components (heritability ranged from 0.35 to 0.87). Genotypic correlations among resistance traits for the different races were high (0.73 to 0.90). However, correlations among different resistance components for a single race were not all significant. A major quantitative trait locus for all components of partial resistance to E2 was associated to the cluster controlling incompatibility to E1 and E3 and marked by OPM03/04_480 (R2from 48 to 68%).


2021 ◽  
Vol 22 ◽  
Author(s):  
Ratna Rani Majumder ◽  
Nitika Sandhu ◽  
Shailesh Yadav ◽  
Margaret Catolos ◽  
Ma. Teresa Sta. Cruz ◽  
...  

Aims: The aim of the present study was to evaluate the performance of ‘high’-‘low’ yielding pyramided lines (PLs) with the same combinations of qDTYs in Samba Mahsuri, MR219 and IR64-Sub1 genetic backgrounds and understand the genetic interactions of QTL and with genetic background affecting grain yield. Background: Epistasis regulates the expression of traits governed by several major/minor genes/QTL. Multiple pyramided lines (PLs) with the same grain yield QTL (qDTYs) combinations but possessing grain yield variability under different levels of reproductive stage drought stress were identified in different rice genetic backgrounds at International Rice Research Institute (IRRI). Objectives: The objectives of the present study were to evaluate the performance pyramided lines (PLs) with drought QTL in the backgrounds of Samba Mahsuri, MR219 and IR64-Sub1 under reproductive stage drought stress (RS) and NS (non-stress) conditions ii) to understand the effect of epistatic interactions of qDTYs and with genetic background on GY under the differential level of stress iii) to identify the promising drought-tolerant lines with high yield under drought and higher background recovery in different genetic backgrounds. Results: Several digenic interactions were found in different genetic backgrounds, 13 interactions in Samba Mahsuri, 11 in MR219 and 20 in IR64-Sub1 backgrounds. Among all digenic interactions, one QTL × QTL interaction, 17 QTL × background and 26 background × background interactions resulted in GY reduction in low yielding PLs in different genetic backgrounds under LSS or LMS. Negative interaction of qDTY3.1, qDTY4.1 and qDTY9.1 with background markers and background × background interactions caused up to 15% GY reduction compared to the high yielding PLs under LMS in the Samba Mahsuri PLs. In MR219 PLs, the negative interaction of qDTY2.2, qDTY3.2, qDTY4.1 and qDTY12.1 with the background marker interval RM314-RM539, RM273-RM349 and RM445-RM346, RM473D-RM16, respectively resulted in 52% GY reduction compared to the high yielding PLs under LSS. In IR64-Sub1 PLs, qDTY6.1 interacted with background loci at RM16-RM135, RM228-RM333, RM202-RM287 and RM415-RM558A marker interval under LSS; and at RM475-RM525 marker interval under LMS, causing GY reduction to 58% compared to the high yielding PLs. Conclusion: High yielding PLs in Samba Mahsuri (IR 99734:1-33-69-1-22-6), MR219 (IR 99784-156-87-2-4-1) and IR64-Sub1 (IR 102784:2-89-632-2-1-2) backgrounds without any negative interactions were identified. The identified selected promising PLs may be used as potential drought-tolerant donors or may be released as varieties for drought-prone ecosystems in different countries. Methods: The experiments were conducted in 2015DS (dry season), 2015WS (wet season) and 2017 DS at IRRI, Los Baños, Philippines, in a transplanted lowland ecosystem under lowland severe stress (LSS), moderate lowland stress (LMS) and lowland non-stress (LNS). The experiments were laid out in alpha lattice design with two replications.


Sign in / Sign up

Export Citation Format

Share Document