Production and cytogenetic analysis of hybrids between Triticum aestivum and some caespitose Agropyron species

Genome ◽  
1987 ◽  
Vol 29 (4) ◽  
pp. 537-553 ◽  
Author(s):  
Abdul Mujeeb-Kazi ◽  
Silverio Roldan ◽  
D. Y. Suh ◽  
Lesley A. Sitch ◽  
Shafqat Farooq

Intergeneric hybrids between Triticum aestivum L. cultivars and 12 traditional Agropyron species were produced in variable frequencies, lowest being 0.35% for A. stipaefolium to a high of 41.98% for A. varnense. The crossing success of T. aestivum cultivars ranged from 'Chinese Spring' > 'Pavon-76' = 'Nacozari-75' > 'Fielder' = 'Fremont' > 'Glennson-81'. All F1 hybrids were somatically stable. The new combinations were with A. curvifolium (Thinopyrum curvifolium), A. rechingeri (T. sartorii = rechingeri), A. scythicum (T. scythicum), and A. stipaefolium (Pseudoroegeneria stipaefolia). All hybrids were perennial and possessed a modified phenotype that was intermediate between the parents involved in the hybrid combinations with major variation in spike morphology (elongated spikes with lax internodes). High-pairing hybrids, presumably owing to suppression of the Ph locus were of T. aestivum - A. scythicum (15.31 I + 2.25 II rings + 6.92 II rods + 0.32 III) and T. aestivum - A. stipaefolium (10.6 I + 7.08 II rings + 4.41 II rods + 0.54 III). In the other combinations, the pairing was either low or high, and if high, pairing was attributed to autosyndetic association of the alien genome chromosomes. Based on the meiotic pairing data, alien species that were segmental allotetraploids or partial autopolyploids, or segmental allohexaploids or autoallohexaploids, may be advantageous in developing backcross derivatives with synthetic genomes. Production of fertile amphiploids was restricted to T. aestivum - A. rechingeri. Key words: Triticum aestivum, Agropyron species, Pseudoroegeneria species, Thinopyrum species, intergeneric hybrids, crossability, wide crosses.

Genome ◽  
1991 ◽  
Vol 34 (3) ◽  
pp. 313-316
Author(s):  
Sandra J. Primard ◽  
Rosalind Morris ◽  
Charles M. Papa

The wheat (Triticum aestivum L.) cultivar Atlas 66 possesses a heterozygous reciprocal translocation that has persisted through seven generations of self-pollination and also has appeared in progeny of crosses between cv. Atlas 66 and other wheat cultivars or lines. Crosses were made between cv. Atlas 66 and the 21 cv. Chinese Spring double ditelosomics to identify the chromosomes involved in the translocation. F1 plants testing chromosomes 2A and 2D had a chain with one telosome attached and the other unpaired in some metaphase I cells, indicating that 2A and 2D were involved in the translocation. The F1s testing the other 19 chromosomes had a chain of four and a trivalent that included the two telosomes. F1 meiotic configurations from crosses between cv. Altas 66 and cv. Chinese Spring ditelosomics 2AS, 2AL, 2DS, and 2DL indicated that the breakpoints were in 2AL and 2DL and that the breakpoint in 2DL was closer to the end of the arm than the breakpoint in 2AL. The short translocated 2DL segment could explain the occurrence of chains as well as rings when cv. Atlas 66 was self-pollinated, and a predominance of chains in crosses with other cultivars or lines. There was evidence for the transmission of duplicate-deficient gametes from the translocation.Key words: heterozygous reciprocal translocation, Triticum aestivum, wheat, cv. Atlas 66.


Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 793-796 ◽  
Author(s):  
M. C. Cuadrado ◽  
C. Romero

The present study analyzed meiotic pairing in wheat – rye hybrids obtained by crossing of Triticum aestivum cv. Chinese Spring with allogamous ryes, two cultivars of Secale cereale ('Don Enrique' and 'Selectión') and Secale cereale ssp. segetale. The results indicate that each rye type has different behaviour on hybrid meiotic pairing because they contain distinct genetic systems affecting meiotic pairing. In the case of 'Don Enrique' and 'Selección,' a polygenic system could be present, but not identical in both cultivars. On the other hand, Secale cereale ssp. segetale contained genes that strongly affect the genetic system controlling homoeologous pairing in wheat.Key words: homoeologous pairing, wheat – rye hybrids, polygenic system, major genes.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 1069-1085 ◽  
Author(s):  
A J Lukaszewski

Abstract During the development of disomic additions of rye (Secale cereale L.) chromosomes to wheat (Triticum aestivum L.), two reverse tandem duplications on wheat chromosomes 3D and 4A were isolated. By virtue of their meiotic pairing, the reverse tandem duplications initiated the chromatid type of the breakage-fusion-bridge (BFB) cycle. This BFB cycle continued through pollen mitoses and in the early endosperm divisions, but no clear evidence of its presence in embryo mitoses was found. The chromosome type of BFB cycle was initiated by fusion of two broken chromosome ends resulting in a dicentric or a ring chromosome. Chromosome type BFB cycles were detected in embryo mitoses and in root tips, but they did not persist until the next meiosis and were not transmitted to the progeny. Active BFB cycles induced breakage of other wheat chromosomes that resulted in additional reverse tandem duplications and dicentric and ring chromosomes. Four loci, on chromosome arms 2BS, 3DS, 4AL, and most likely on 7DL, were particularly susceptible to breakage. The BFB cycles produced high frequency of variegation for pigmentation of the aleurone layer of kernels and somatic chimeras for a morphological marker. With the exception of low mutation rate, the observed phenomena are consistent with the activity of a Ds-like element. However, it is not clear whether such an element, if indeed present, was of wheat or rye origin.


Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 468-473 ◽  
Author(s):  
Ernest D. P. Whelan ◽  
G. B. Schaalje

Aneuploid seedlings of the common wheat (Triticum aestivum L.) cv. Chinese Spring (CS) that are nullisomic or telosomic for the long arm of chromosome 6D are susceptible to chilling injury under prolonged exposure to 6 °C; normal euploids or telosomics for the short arm are not. Studies of seedling grown for various durations at 20 °C prior to growth at 6 °C showed that chilling injury was a juvenile phenomenon and that the extent of injury was inversely proportional to the duration of growth at 20 °C to a maximum of about 14 days. When reciprocal crosses were made between susceptible 6D nullisomics or long-arm ditelocentrics of CS and resistant 6D nullisomics of three spring and one winter wheat cultivars, progenies from aneuploid F1 hybrids all segregated for susceptibility as a recessive trait and at a frequency approximating a dihybrid ratio; no cytoplasmic effects were detected. Aneuploids of the group 6 homoeologues of the spring wheat cvs. Cadet and Rescue were resistant, as were group 6 whole-chromosome substitutions of eight different donor wheats in the recipient parent CS and 56 other euploids tested. Genes for resistance to chilling injury appear to involve the group 6 chromosomes and the short arm of 6D in Chinese Spring. In contrast with chilling injury, all aneuploid lines with only four doses of the "corroded" loci on group 6 chromosomes exhibited chlorotic symptoms.Key words: Triticum aestivum, chilling injury.


2014 ◽  
Vol 6 (11) ◽  
pp. 3039-3048 ◽  
Author(s):  
Jian Ma ◽  
Jiri Stiller ◽  
Yuming Wei ◽  
You-Liang Zheng ◽  
Katrien M. Devos ◽  
...  

1981 ◽  
Vol 23 (2) ◽  
pp. 287-303 ◽  
Author(s):  
J. Dvořák

Triticum aestivum L. em Thell ditelosomics 7AL and 7DS and T. aestivum-Elytrigia elongata (Host) Holub (2n = 2x = 14) ditelosomic additions were crossed with "E. elongata 4x" (2n = 4x = 28), E. caespitosa (C. Koch) Nevski (2n = 4x = 28), and E. intermedia (Host) Nevski (2n = 6x = 42). The effect of each Elytrigia genotype on homoeologous (heterogenetic) chromosome pairing was assessed by comparing the pairing frequencies of T. aestivum cv. Chinese Spring telosomes 7AL and 7DS in the hybrids with the pairing frequency of telosome 7AL in haploid Chinese Spring. The genotype of "E. elongata 4x" had no effect on heterogenetic pairing in the hybrids. Although some genotypes of E. caespitosa and E. intermedia promoted heterogenetic pairing in the hybrids, others had no effect. Telosome VS of E. elongata interacted in a complementary fashion with the genotype of "E. elongata 4x," but not with the genotypes of Chinese Spring and E. caespitosa, and it promoted heterogenetic pairing. In hybrids in which the wheat diploidizing genes were active at the normal level, the E. elongata telosomes paired with chromosomes of "E. elongata 4x" in 5.8% to 24.6% of the cells, with chromosomes of E. caespitosa in 0.0% to 1.0% of the cells, and with chromosomes of E. intermedia in 0.0% to 2.8% of the cells. A model of chromosome differentiation is discussed and special attention is devoted to the origin of diploid-like pairing in polyploid species.


1980 ◽  
Vol 22 (2) ◽  
pp. 197-212
Author(s):  
S. S. Maan

The Triticum aestivum L. (2n = 42; AABBDD) and T. durum Desf. (2n = 28; AABB) genomes were substituted into the cytoplasm of two Aegilops triuncialis L. (2n = 28; CCCuCu) accessions. In F1 (ABCCu) and in a 42-chromosome backcross plant (AABBCCu) meiotic pairing between the C- and Cu-genome chromosomes was substantially reduced. Therefore, some of the pairing in the F1 of Ae. caudata L. (2n = 14; CC) × Ae. umbellulata Zhuk. (2n = 14; CuCu) may have been of the homoelogous type. In early backcrosses with T. aestivum, the euploid gametes or zygotes did not function in plants having Aegilops chromosome(s), but euploid plants with Ae. triuncialis cytoplasm were obtained in the fifth backcross. These plants were used as the cytoplasmic source to substitute the T. durum genomes into Ae. triuncialis cytoplasm; euploid durum plants were obtained in the second backcross. Alloplasmic T. durum and T. aestivum plants with Ae. triuncialis cytoplasm had closer resemblance to the plants with Ae. umbellulata cytoplasm than to those with Ae. caudata cytoplasm. These nucleo-cytoplasmic interactions indicated cytoplasmic similarity between Ae. umbellulata and Ae. triuncialis.


2012 ◽  
Vol 58 (No. 12) ◽  
pp. 534-539 ◽  
Author(s):  
G.Q. Wu ◽  
L.N. Zhang ◽  
Y.Y. Wang

 To investigate the responses of growth and antioxidant enzymes to osmotic stress in two different wheat cultivars, one drought tolerant (Heshangtou, HST) and the other drought sensitive (Longchun 15, LC15), 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and –0.75 MPa for 2 days. It is found that osmotic stress decreased shoot length in both wheat cultivars, whereas to a lesser degree in HST than in LC15. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of shoot in both wheat cultivars were increased by osmotic stress. It is clear that MDA contents increased less in the more drought tolerant cultivar HST than in drought sensitive one LC15. On the contrary, POD and CAT activities increased more in HST than LC15 under osmotic stress. As the activity of SOD, however, no significant differences were found between HST and LC15. These results suggest that wheat cultivar HST has higher activities of antioxidant enzymes such as POD and CAT to cope with oxidative damage caused by osmotic stress compared to sensitive LC15.  


Sign in / Sign up

Export Citation Format

Share Document