C-banding and nucleolar activity of tetraploid Avena species

Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 633-638 ◽  
Author(s):  
A. Fominaya ◽  
C. Vega ◽  
E. Ferrer

The Giemsa C-banding pattern of the chromosomes of five tetraploid species of Avena have been studied. The chromosomes of AABB species (A. barbata, A. vaviloviana, and A. abyssinica) had similar C-banding patterns to those of A genome species. AACC species (A. maroccana and A. murphyi) possessed two sets of seven chromosome pairs with C-banding patterns similar to those observed in the diploid A and C genome species. However, no good correspondence between either of these two chromosome groups and any one diploid species has been found. When the nucleolar organizer activity of the species was analysed by silver staining, fewer nucleoli and nucleolar organizer regions (NORs) were observed than expected, assuming complete additivity of those from the donor diploid species.Key words: C-banding, NOR, Avena, heterochromatin.

Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 627-632 ◽  
Author(s):  
A. Fominaya ◽  
C. Vega ◽  
E. Ferrer

Giemsa C-banding was used to identify individual somatic chromosomes in eight diploid species of Avena. Two patterns of heterochromatin distribution were found. The chromosomes of five A genome species (A. strigosa, A. hirtula, A. longiglumis, A. damascena, and A. canariensis) possessed mainly telomeric bands, whereas those from three C genome species (A. clauda, A. pilosa, and A. ventricosa) were characterized by higher chromatin condensation and several intercalary heterochromatin bands. The divergent evolution between the two groups is confirmed after C-banding. The unique C-banding patterns of several chromosomes in each species will be a useful tool for the study of meiotic behaviour in interspecific hybrids among Avena spp.Key words: C-banding, Avena, heterochromatin.


Genome ◽  
1987 ◽  
Vol 29 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Q. Cai ◽  
S. Lu ◽  
C. C. Chinnappa

The karyotypes and Giemsa C-banding patterns of the chromosomes in eight species of Arachis L. have been studied. Six species are diploid with 20 chromosomes and two are tetraploid with 40 chromosomes. One diploid species (A. rigonii Krap. et Greg.) belongs to the sect. Erectoides and the rest belong to the sect. Arachis. Among the diploid species from the sect. Arachis, A. batizocoi Krap. et Greg, has a unique karyotype while others have similar karyotypes. Two tetraploid species, A. monticola Krap. et Greg, and A. hypogaea L., possess the most similar karyotypes. However, the diploid species, A. rigonii, from sect. Erectoides, has a karyotype distinguishable from those in sect. Arachis. The C-banding patterns of the chromosomes have been obtained for all the species. The centromeric bands have been found in all the chromosomes and the intercalary bands can be identified in a varied number of chromosomes among these complements. However, the telomeric bands only exist in one or two chromosomes. The comparison of banding patterns demonstrated that structural differences exist among the chromosomal complements of the species with similar chromosome morphology. The karyotype variation among the different species and interspecific relationship are discussed. It is suggested that all the diploid species with the A genome are closely related. There are close relationships between the tetraploid species and diploid species with the A or B genome within sect. Arachis. Key words: Arachis, cytology, karyotypes, Giemsa C-banding.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
E. D. Badaeva ◽  
O. Yu. Shelukhina ◽  
S. V. Goryunova ◽  
I. G. Loskutov ◽  
V. A. Pukhalskiy

Tetraploid oat species Avena abyssinica, A. vaviloviana, A. barbata, and A. agadiriana were studied using C-banding technique, in situ hybridization with the 45S and 5S rDNA probes, and RAPD analysis in comparison with the diploid species carrying different types of the A-genome (A. wiestii, As; A. longiglumis, Al; A. canariensis, Ac; A. damascena, Ad, A. prostrata, Ap). The investigation confirmed that all four tetraploids belong to the same AB-genome group; however A. agadiriana occupies distinct position among others. The C-banding, FISH, and RAPD analyses showed that Avena abyssinica, A. vaviloviana, and A. barbata are very similar; most probably they originated from a common tetraploid ancestor as a result of minor translocations and alterations of C-banding polymorphism system. AB-genome species are closely related with the A-genome diploids, and an As-genome species may be regarded as the most probable donor of their A-genome. Although their second diploid progenitor has not been identified, it seems unlikely that it belongs to the As-genome group. The exact diploid progenitors of A. agadiriana have not been determined; however our results suggest that at least one of them could be related to A. damascena.


2005 ◽  
Vol 3 (2) ◽  
pp. 285-290 ◽  
Author(s):  
Caroline Garcia ◽  
Orlando Moreira Filho

Karyotypes and other chromosomal markers were investigated in three species of the catfish genus Pimelodus, namely P. fur, P. maculatus and Pimelodus sp., from municipality of Três Marias, Minas Gerais, Brazil, using differential staining techniques (C-banding, Silver nitrate and CMA3 staining). The diploid chromosome number was 2n = 56 in P. maculatus and Pimelodus sp., while in P. fur 2n = 54. The karyotype of P. fur consisted in 32M + 8SM + 6ST + 8A with fundamental number (NF) of 100, that of P. maculatus 32M + 12SM + 12A with NF = 112, and that of Pimelodus sp. had 32M + 12Sm + 6ST + 6A with NF = 106.The nucleolar organizer regions (NORs) in all three species were invariably detected in telomeres of longer arm of the 20th chromosome pair. These sites were also positive after CMA3 and C-banding. No heteromorphic sex chromosomes were detected and C-banding pattern was species specific. Inferences about the karyotype differentiation in Pimelodus and putative chromosomal rearrangements are hypohesized.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1271-1278 ◽  
Author(s):  
Jun-Zhi Wei ◽  
W. F. Campbell ◽  
G. J. Scoles ◽  
A. E. Slinkard ◽  
R. Ruey-Chyi Wang

Russian wildrye, Psathyrostachys juncea (Fisch.) Nevski (2n = 2x = 14; NsNs), is an important forage grass and a potential source of germplasm for cereal crop improvement. Because of genetic heterogeneity as a result of its self-incompatibility, it is difficult to identify trisomics of this diploid species based on morphological characters alone. Putative trisomies (2n = 2x + 1 = 15), derived from open pollination of a triploid plant by pollen grains of diploid plants, were characterized by Giemsa C-banding. Based on both karyotypic criteria and C-banding patterns, four of the seven possible primary trisomics, a double-deletion trisomic, and two tertiary trisomics were identified.Key words: Russian wildrye, Psathyrostachys juncea, trisomic, C-banding, karyotype.


Caryologia ◽  
2002 ◽  
Vol 55 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Mario Jorge Ignacio Brum ◽  
Liliane Cristine Gomes Mota

1985 ◽  
Vol 27 (4) ◽  
pp. 433-440 ◽  
Author(s):  
Ruth Phillips ◽  
Peter E. Ihssen

Chromosome banding patterns obtained by silver staining (Ag-NORs) were analyzed in three species of Salmo (rainbow, brown trout, and Atlantic salmon) and three species of Salvelinus (brook trout, lake trout, and arctic char). In rainbow trout and Atlantic salmon the Ag-NORs were found at the secondary constrictions of a single chromosome pair, while in brown trout the Ag-NORs were found on the short arms of one or two of the two longest subtelocentric or acrocentric chromosome pairs. The location of the Ag-NORs was multichromosomal in the three Salvelinus species, occurring on one or both members of four to six different chromosome pairs in different individuals. The Ag-NOR sites were on the short arms of some acrocentric pairs and at the telomeres of other acrocentric pairs and one or two metacentric pairs. Chromomycin A3 positive bands were found at the same sites as the Ag-NORs in all species. In the species with multichromosomal location of Ag-NORs, polymorphisms in the size and location of the NORs were extremely common, so that almost every individual fish had a different pattern of Ag-NOR sites.Key words: banding, Salmo, Salvelinus, Ag-NORs, polymorphisms, nucleolar organizer.


2006 ◽  
Vol 27 (4) ◽  
pp. 481-489 ◽  
Author(s):  
Luciana B. Lourenço ◽  
Josiane A.A. Nascimento ◽  
Gilda V. Andrade ◽  
Denise C. Rossa-Feres ◽  
Shirlei M. Recco-Pimentel

Abstract Detailed characterizations of the karyotypes of the Brazilian leptodactylid frogs Pleurodema diplolistris, the only species of Pleurodema not studied cytogenetically so far, and Physalaemus nattereri, a species in the Ph. biligonigerus group, are presented. Both karyotypes had 2n = 22 and their chromosomes had a very similar morphology, except for pair 11, which was metacentric in Pl. diplolistris and telocentric in Ph. nattereri. The localization of nucleolar organizer regions (NORs) and heterochromatic bands allowed the differentiation of chromosomes that were morphologically indistinguishable between these species, such as pairs 1, 3 and 10, which showed interstitial C-bands in Ph. nattereri, and pair 8, that had an NOR and an adjacent C-band in Pl. diplolistris. Pair 8 also has NOR-bearing chromosomes in many other Pleurodema species. However, in these species, the NOR is located proximal to the centromere on the short arm, while in Pl. diplolistris it occurred distally on the long arm, a condition that may be considered a derived state. In Ph. nattereri, the NOR occurred on chromosome 11 and differed from the other species of the Ph. biligonigerus group. In contrast, C-banding revealed a heterochromatic block near the centromere on the short arm of pair 3, a characteristic common to all members of this group of Physalaemus.


Genome ◽  
1990 ◽  
Vol 33 (4) ◽  
pp. 542-555 ◽  
Author(s):  
B. Friebe ◽  
N.-S. Kim ◽  
J. Kuspira ◽  
B. S. Gill

Cytogenetic studies in Triticum monococcum (2n = 2x = 14) are nonexistent. To initiate such investigations in this species, a series of primary trisomics was generated from autotriploids derived from crosses between induced autotetraploids and diploids. All trisomics differed phenotypically from their diploid progenitors. Only two of the seven possible primary trisomic types produced distinct morphological features on the basis of which they could be distinguished. The chromosomes in the karyotype were morphologically very similar and could not be unequivocally identified using standard techniques. Therefore, C-banding was used to identify the chromosomes and trisomics of this species. Ag–NOR staining and in situ hybridization, using rDNA probes, were used to substantiate these identifications. A comparison of the C-banding patterns of the chromosomes of T. monococcum with those of the A genome in Triticum aestivum permitted identification of five of its chromosomes, viz., 1A, 2A, 3A, 5A, and 7A. The two remaining chromosomes possessed C-banding patterns that were not equivalent to those of any of the chromosomes in the A genome of the polyploid wheats. When one of these undesignated chromosomes from T. monococcum var. boeoticum was substituted for chromosome 4A of Triticum turgidum, it compensated well phenotypically and therefore genetically for the loss of this chromosome in the recipient species. Because this T. monococcum chromosome appeared to be homoeologous to the group 4 chromosomes of polyploid wheats, it was designated 4A. By the process of elimination the second undesignated chromosome in T. monococcum must be 6A. Analysis of the trisomics obtained led to the following conclusions. (i) Trisomics for chromosome 3A were not found among the trisomic lines analyzed cytologically. (ii) Primary trisomics for chromosomes 2A, 4A, 6A, and 7A were positively identified. (iii) Trisomics for the SAT chromosomes 1A and 5A were positively identified in some cases and not in others because of polymorphism in the telomeric C-band of the short arm of chromosome 1A. (iv) Trisomics for chromosome 7A were identified on the basis of their distinct phenotype, viz., the small narrow heads and small narrow leaves. Because rRNA hybridizes lightly to nucleolus organizer regions on chromosome 1A and heavily to nucleolus organizer regions on chromosome 5A, our results indicate that trisomics in line 50 carry chromosome 1A in triple dose and trisomics in lines 28 and 51 carry chromosome 5A in triplicate. Variable hybridization of the rDNA probe to nucleolus organizer regions on chromosomes in triple dose in lines 7, 20, and 28 precluded the identification of the extra chromosome in these lines. Cytogenetic methods for unequivocally identifying trisomics for chromosomes 1A and 5A are discussed. Thus six of the series of primary trisomics have been identified. Telotrisomic lines are also being produced.Key words: Triticum monococcum, trisomics, C-banding, Ag-NOR staining, in situ hybridization, rDNA probes, plant morphology.


Sign in / Sign up

Export Citation Format

Share Document