branchiostoma belcheri
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 9)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 22 (9) ◽  
pp. 4737
Author(s):  
Yana Y. Toporkova ◽  
Elena O. Smirnova ◽  
Natalia V. Lantsova ◽  
Lucia S. Mukhtarova ◽  
Alexander N. Grechkin

The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher’s) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name “B. belcheri EAS/AOS” (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.


2021 ◽  
Vol 114 ◽  
pp. 103838
Author(s):  
Yunpeng Cao ◽  
Tao Fang ◽  
Mingli Fan ◽  
Lei Wang ◽  
Caiyun Lv ◽  
...  

2020 ◽  
Vol 36 (1) ◽  
pp. 13-21
Author(s):  
S. A. Kosushkin ◽  
N. S. Vassetzky

2019 ◽  
Vol 94 ◽  
pp. 264-270
Author(s):  
Yunpeng Cao ◽  
Na Jin ◽  
Mingli Fan ◽  
Caiyun Lv ◽  
Xiaojun Song ◽  
...  

Chemosphere ◽  
2019 ◽  
Vol 218 ◽  
pp. 205-210 ◽  
Author(s):  
Qi-Lin Zhang ◽  
Zhi-Xiang Dong ◽  
Yan Xiong ◽  
Hong-Wei Li ◽  
Jun Guo ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 353 ◽  
Author(s):  
László Bányai ◽  
Krisztina Kerekes ◽  
Mária Trexler ◽  
László Patthy

Lancelets, extant representatives of basal chordates, are prototypic examples of evolutionary stasis; they preserved a morphology and body-plan most similar to the fossil chordates from the early Cambrian. Such a low level of morphological evolution is in harmony with a low rate of amino acid substitution; cephalochordate proteins were shown to evolve slower than those of the slowest evolving vertebrate, the elephant shark. Surprisingly, a study comparing the predicted proteomes of Chinese amphioxus, Branchiostoma belcheri and the Florida amphioxus, Branchiostoma floridae has led to the conclusion that the rate of creation of novel domain combinations is orders of magnitude greater in lancelets than in any other Metazoa, a finding that contradicts the notion that high rates of protein innovation are usually associated with major evolutionary innovations. Our earlier studies on a representative sample of proteins have provided evidence suggesting that the differences in the domain architectures of predicted proteins of these two lancelet species reflect annotation errors, rather than true innovations. In the present work, we have extended these studies to include a larger sample of genes and two additional lancelet species, Asymmetron lucayanum and Branchiostoma lanceolatum. These analyses have confirmed that the domain architecture differences of orthologous proteins of the four lancelet species are because of errors of gene prediction, the error rate in the given species being inversely related to the quality of the transcriptome dataset that was used to aid gene prediction.


Sign in / Sign up

Export Citation Format

Share Document