Linkage relations of Gli-D1, Rg2, and Lr21 on the short arm of chromosome 1D in wheat

Genome ◽  
1990 ◽  
Vol 33 (6) ◽  
pp. 937-940 ◽  
Author(s):  
S. S. Jones ◽  
J. Dvořák ◽  
C. O. Qualset

Homozygous recombinant substitution lines, derived from a cross of Triticum aestivum 'Chinese Spring' with a disomic substitution line of Triticum tauschii chromosome 1D in 'Chinese Spring', were used to investigate the linkage relationships among the loci Glu-D1, encoding high molecular weight glutenin storage proteins, Gli-D1, encoding gliadin storage proteins, Rg2, controlling glume color, and Lr21, conferring leaf-rust resistance. Gli-D1, on chromosome arm 1DS, is tightly linked to Rg2 and Lr21 (1.4 and 5.6% recombination, respectively). The order of the loci is Gli-D1–Rg2–Lr21. Glu-D1, on chromosome arm 1DL, segregates independently (P = 0.43) of Gli-D1, Rg2, and Lr21. The position of Glu-D1, Gli-D1, Rg2, and Lr21 in the genetic linkage map of chromosome 1D agrees with the position of storage protein, glume color, and rust-resistance loci on chromosomes 1A and 1B.Key words: leaf-rust resistance, seed storage protein, glutenin, gliadin, glume color, Triticum aestivum, Triticum tauschii.

Genome ◽  
1991 ◽  
Vol 34 (4) ◽  
pp. 505-508 ◽  
Author(s):  
S. S. Jones ◽  
J. Dvořák ◽  
D. R. Knott ◽  
C. O. Qualset

Chromosome 1D homozygous recombinant substitution lines derived from Triticum aestivum 'Chinese Spring' (cross 1) or 'Chinese Spring' double-ditelosomic 1D (cross 2) hybridized with a disomic substitution line of Triticum tauschii chromosome 1D in 'Chinese Spring' were used to investigate the linkage relationships among Glu-D1, encoding subunits of high molecular weight glutenin storage proteins; Gli-D1, encoding gliadin storage proteins; Sr33, conferring stem rust resistance; and the centromere. Based on analysis of 88 and 91 recombinant substitution lines of crosses 1 and 2, respectively, Sr33 is tightly linked to Gli-D1 on chromosome arm 1DS (5.6 and 7.6% recombination) and less tightly to the centromere (29.6%, cross 2) and to Glu-D1 (40.9 and 39.5%). The order of the loci is Glu-D1 – centromere – Sr33 – Gli-D1.Key words: stem rust resistance, seed storage protein, glutenin, gliadin, Triticum aestivum, Triticum tauschii.


Genome ◽  
1992 ◽  
Vol 35 (2) ◽  
pp. 276-282 ◽  
Author(s):  
D. Bai ◽  
D. R. Knott

Several tests were done in bread wheat (Triticum aestivum L.) to demonstrate the occurrence of genes on D-genome chromosomes that suppress resistance to leaf rust (Puccinia recondita f. sp. tritici Rob. ex Desm.) and stem rust (Puccinia graminis f. sp. tritici Eriks. &Henn.). Ten rust-resistant wild tetraploid wheats (T. turgidum var. dicoccoides) were crossed with both durum (T. turgidum var. durum) and bread wheats. In all cases, resistance to leaf rust and stem rust was expressed in the hybrids with durum wheats but suppressed in the hybrids with bread wheats. Crosses were made between five diverse durum wheats and four diverse bread wheats. The pentaploid hybrid seedlings of 12 crosses were tested with leaf rust race 15 and in all cases the resistance of the durum parents was suppressed. Fourteen D-genome disomic chromosome substitution lines in the durum wheat 'Langdon' were tested with stem rust race 15B-1 and leaf rust race 15. Chromosomes 1B, 2B, and 7B were found to carry genes for resistance to stem rust but no suppressors were detected. Chromosomes 2B and 4B carried genes for resistance to leaf rust, and 1D and 3D carried suppressors. Crosses between seven D-genome monosomies of 'Chinese Spring' and three dicoccoides accessions showed that 'Chinese Spring' possesses genes on 1D, 2D, and 4D, which suppress the stem rust resistance of all three dicoccoides accessions. All three chromosomes must be present to suppress resistance, indicating that some form of complementary gene interaction is involved. In addition, 'Chinese Spring' carries a gene or genes on 3D that suppresses the leaf rust resistance of all three dicoccoides accessions, plus a gene or genes on 1D that suppresses the leaf rust resistance of only one of them. The data raise some interesting questions about the specificity of the suppressors. The high frequency of occurrence of suppressors in the bread wheat population suggests that they must have a selective advantage.Key words: Triticum aestivum, stem rust, leaf rust, rust resistance, suppressor.


2020 ◽  
Author(s):  
Xiangyang Xu ◽  
Genqiao Li ◽  
Guihua Bai ◽  
Amy Bernardo ◽  
Brett F Carver ◽  
...  

Leaf rust, caused by Puccininia triticina (Pt), is one of the most common wheat diseases in the Great Plains of the USA. A population of recombinant inbred lines (RILs) from CI 17884 x Bainong 418 was evaluated for responses to leaf rust race Pt52-2 and genotyped using single nucleotide polymorphism (SNP) markers. Quantitative trait locus (QTL) analysis identified a minor gene for resistance to leaf rust, designated QLr.stars-1RS, on the 1BL.1RS translocation segment in Bainong 418, and another leaf rust resistance gene, Lr47, on chromosome 7A of CI 17884. Lr47, originally identified in CI 17884 and located in a wheat-T. speltoides translocation segment 7S#1S, remains one of only a few race-specific resistance genes still effective in the Great Plains. A set of 7A-specific simple sequence repeat (SSR) markers were developed and used to genotype CI 17884 and a pair of near-isogenic lines differing in the presence or absence of 7S#1S, PI 603918 and Pavon F76. Haplotype analysis indicated that the estimated length of 7S#1S was 157.23 to 174.42 Mb, accounting for about 23% of the 7A chromosome. Two SNPs on 7S#1S and 4 SNPs on the 1RS chromosome arm were converted to KASP markers, which were subsequently validated in a panel of cultivars and recently released elite breeding lines. Of these, one and two KASP markers are specific to the 1RS chromosome arm and 7S#1S, respectively, indicating that they can facilitate the introgression of Lr47 and QLr.stars-1BS into locally adapted wheat cultivars and breeding lines.


2020 ◽  
Vol 133 (9) ◽  
pp. 2685-2694 ◽  
Author(s):  
K. Rani ◽  
B. R. Raghu ◽  
S. K. Jha ◽  
Priyanka Agarwal ◽  
Niharika Mallick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document