Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes

Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 221-225 ◽  
Author(s):  
Angélique D'Hont ◽  
David Ison ◽  
Karine Alix ◽  
Catherine Roux ◽  
Jean Christophe Glaszmann

18S-5.6S-25S and 5S ribosomal DNA (rDNA) sites were located by in situ hybridization to the three main species of the Saccharum genus. For each species and each rDNA family, the position and number of sites in the various cytotypes suggested the presence of one locus and basic chromosome numbers of 10 for Saccharum officinarum and Saccharum robustum and\i 8 forSaccharum spontaneum. The implications of these results for the genetic maps of modern cultivars derived from crosses between the species S. officinarum and S. spontaneum are discussed.Key words: sugarcane, Saccharum, 18S-5.6S-25S rRNA, 5S rRNA, basic chromosome number, in situ hybridization.

Genome ◽  
1998 ◽  
Vol 41 (2) ◽  
pp. 221-225 ◽  
Author(s):  
Angélique D'Hont ◽  
David Ison ◽  
Karine Alix ◽  
Catherine Roux ◽  
Jean Christophe Glaszmann

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xueting Li ◽  
Fei Huang ◽  
Jin Chai ◽  
Qiusong Wang ◽  
Fan Yu ◽  
...  

Abstract Background In recent years, sugarcane has attracted increasing attention as an energy crop. Wild resources are widely used to improve the narrow genetic base of sugarcane. However, the infertility of F1 hybrids between Saccharum officinarum (S. officinarum) and Erianthus arundinaceus (E. arundinaceus) has hindered sugarcane breeding efforts. To discover the cause of this infertility, we studied the hybridization process from a cytological perspective. Results We examined the meiotic process of pollen mother cells (PMCs) in three F1 hybrids between S. officinarum and E. arundinaceus. Cytological analysis showed that the male parents, Hainan 92–77 and Hainan 92–105, had normal meiosis. However, the meiosis process in F1 hybrids showed various abnormal phenomena, including lagging chromosomes, micronuclei, uneven segregation, chromosome bridges, and inability to form cell plates. Genomic in situ hybridization (GISH) showed unequal chromatin distribution during cell division. Interestingly, 96.70% of lagging chromosomes were from E. arundinaceus. Furthermore, fluorescence in situ hybridization (FISH) was performed using 45S rDNA and 5S rDNA as probes. Either 45S rDNA or 5S rDNA sites were lost during abnormal meiosis, and results of unequal chromosomal separation were also clearly observed in tetrads. Conclusions Using cytogenetic analysis, a large number of meiotic abnormalities were observed in F1. GISH further confirmed that 96.70% of the lagging chromosomes were from E. arundinaceus. Chromosome loss was found by further investigation of repeat sequences. Our findings provide insight into sugarcane chromosome inheritance to aid innovation and utilization in sugarcane germplasm resources.


Genome ◽  
1999 ◽  
Vol 42 (2) ◽  
pp. 270-273 ◽  
Author(s):  
P Besse ◽  
C L McIntyre

A wheat ribosomal DNA probe was used to determine the number of rDNA-carrying chromosomes in 2 Erianthus sect. Ripidium species using FISH (fluorescent in situ hybridisation) and non-fluorescent ISH. Two and four ribosomal DNA sites were revealed in E. elephantinus (2n = 20) and E. procerus (2n = 40), respectively. This result, together with previously published data showing 6 rDNA-carrying chromosomes in E. arundinaceus (2n = 60), confirms a possible basic chromosome number of x = 10 in Erianthus sect. Ripidium.Key words: Erianthus, FISH, ISH, ribosomal DNA, Saccharum, sugarcane.


Genome ◽  
1994 ◽  
Vol 37 (6) ◽  
pp. 1018-1021 ◽  
Author(s):  
M. Nenno ◽  
K. Schumann ◽  
W. Nagl

This is the first report of fluorescence in situ hybridization (FISH) on plant polytene chromosomes. Different protease pretreatments have been tested to improve fluorescence in situ hybridization FISH on polytene chromosomes of a plant, Phaseolus coccineus, with the aim to enable the detection of low-copy genes. The structural preservation of the chromosomes and the distinctness of the FISH signals were comparatively analysed with a probe for the ribosomal RNA genes after digestion with pepsin and trypsin. The pepsin pretreatment resulted in a general loosening of chromatin with good conservation of chromosome morphology and an increased number and density of signal points. The six nucleolus organizers exhibited significant differences in condensation. The pretreatment with pepsin enabled the detection of the low-copy genes encoding the seed storage protein phaseolin.Key words: plant, Leguminosae, ribosomal RNA genes, seed storage protein genes, protease.


Sociobiology ◽  
2018 ◽  
Vol 65 (4) ◽  
pp. 696 ◽  
Author(s):  
Vanderly Andrade-Souza ◽  
Olivia Maria Pereira Duarte ◽  
Cinthia Caroline Cardoso Martins ◽  
Igor Silva Santos ◽  
Márcio Gilberto Cardoso Costa ◽  
...  

Cytogenetic studies in Melipona are scarce with only 24 species analyzed cytogenetically. Of these, six species had the rDNA sites physically mapped and characterized by Fluorescent in situ Hybridization (fish). The aim of this study was to perform karyotype analyzes on Melipona species from different regions of Brazil, with a greater sampling representative of the Amazonian fauna and using conventional, fluorochrome staining and FISH with heterologous rDNA probes. The predominant chromosome number was 2n = 18, however, the subspecies M. seminigra abunensis and M. s. pernigra showed 2n = 22 chromosomes. The karyotypes were symmetrical, however M. bicolor, M. quadrifasciata, M. flavolineata, M. fuscopilosa, M. nebulosa presented the first pair heteromorphic in length. CMA3+ blocks also exhibited heteromorphism of size and in almost all cases coincided with rDNA sites, except for M. crinita and M. nebulosa, which presented additional non-coincident CMA3+ blocks. The CMA/ rDNA sites were terminal and interstitial in species with high heterochromatic content, and pericentromeric in those species with low heterochromatic content. In addition to pointing out cytogenetic features of cytotaxonomic importance, the reorganization of the genome in Melipona is discussed.


Bothalia ◽  
1989 ◽  
Vol 19 (1) ◽  
pp. 125-132 ◽  
Author(s):  
J. J. Spies ◽  
E. J. L. Saayman ◽  
S. P. Voges ◽  
G. Davidse

Cytogenetic studies of 53 specimens of 14 species of the genus  Ehrharta Thunb. confirmed a basic chromosome number of 12 for the genus. Chromosome numbers for 13 species are described for the first time. The highest ploidy level yet observed in the genus (2n = lOx = 120) is reported for E. villosa var.  villosa. B chromosomes were observed in several specimens of four different species.


2019 ◽  
Vol 191 (4) ◽  
pp. 475-483 ◽  
Author(s):  
Marcelo Guerra ◽  
Tiago Ribeiro ◽  
Leonardo P Felix

Abstract Holocentric chromosomes are rare among angiosperms, but have been suggested to be shared by all or most of the species of Cyperaceae and Juncaceae. However, no clear demonstration of the centromere type in Juncus, the largest genus of Juncaceae, has so far been published. Thus, we conducted a detailed chromosomal investigation of four Juncus spp. aiming to identify their centromere type. Mitotic chromosomes were analysed using the fluorochromes CMA and DAPI, fluorescent in situ hybridization (FISH) with rDNA probes and immunodetection of histones H3 phosphorylated at serine 10 (H3-S10ph) and H2A phosphorylated at threonine 133 (H2A-T133ph). DAPI-stained chromosomes of all species displayed typical primary constrictions, which were not related to AT-poor CMA+ heterochromatin or rDNA sites (usually negatively stained with DAPI). Immunodetection with H3-S10ph and H2A-T133ph revealed hyperphosphorylation of pericentromeric and centromeric regions, respectively, in a restricted area, as observed in monocentric chromosomes. Meiotic analyses in J. microcephalus showed no indication of inverted meiosis, commonly found in plants with holocentric chromosomes. Since the species investigated here belong to four different sections of Juncus and all of them display typical monocentric chromosomes, it seems that this kind of centromere is common in the genus and may represent the standard centromere organization for Juncus. If Juncus has monocentric chromosomes, there is no reason to hypothesize that other genera of Juncaceae for which centromeres have not been carefully investigated have holocentric chromosomes.


Sign in / Sign up

Export Citation Format

Share Document