scholarly journals Aneuploid progeny of the American oyster, Crassostrea virginica, produced by tetraploid × diploid crosses: another example of chromosome instability in polyploid oysters

Genome ◽  
2016 ◽  
Vol 59 (5) ◽  
pp. 327-338 ◽  
Author(s):  
Joana Teixeira de Sousa ◽  
Standish K. Allen ◽  
Haley Baker ◽  
Joseph L. Matt

The commercial production of triploids, and the creation of tetraploid broodstock to support it, has become an important technique in aquaculture of the eastern oyster, Crassostrea virginica. Tetraploids are produced by cytogenetic manipulation of embryos and have been shown to undergo chromosome loss (to become a mosaic) with unknown consequences for breeding. Our objective was to determine the extent of aneuploidy in triploid progeny produced from both mosaic and non-mosaic tetraploids. Six families of triploids were produced using a single diploid female and crossed with three mosaic and non-mosaic tetraploid male oysters. A second set of crosses was performed with the reciprocals. Chromosome counts of the resultant embryos were tallied at 2–4 cell stage and as 6-hour(h)-old embryos. A significant level of aneuploidy was observed in 6-h-old embryos. For crosses using tetraploid males, aneuploidy ranged from 53% to 77% of observed metaphases, compared to 36% in the diploid control. For crosses using tetraploid females, 51%–71% of metaphases were aneuploidy versus 53% in the diploid control. We conclude that somatic chromosome loss may be a regular feature of early development in triploids, and perhaps polyploid oysters in general. Other aspects of chromosome loss in polyploid oysters are also discussed.

Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 79-89 ◽  
Author(s):  
Joana Teixeira de Sousa ◽  
Standish K. Allen ◽  
Brittany M. Wolfe ◽  
Jessica Moss Small

For commercial oyster aquaculture, triploidy has significant advantages. To produce triploids, the principal technology uses diploid × tetraploid crosses. The development of tetraploid brood stock for this purpose has been successful, but as more is understood about tetraploids, it seems clear that chromosome instability is a principal feature in oysters. This paper is a continuation of work to investigate chromosome instability in polyploid Crassostrea virginica. We established families between tetraploids—apparently stable (non-mosaic) and unstable (mosaic)—and normal reference diploids, creating triploid groups, as well as tetraploids between mosaic and non-mosaic tetraploids. Chromosome loss was about the same for triploid juveniles produced from either mosaic or non-mosaic tetraploids or from either male or female tetraploids. However, there was a statistically significant difference in chromosome loss in tetraploid juveniles produced from mosaic versus non-mosaic parents, with mosaics producing more unstable progeny. These results confirm that chromosome instability, as manifested in mosaic tetraploids, is of little concern for producing triploids, but it is clearly problematic for tetraploid breeding. Concordance between the results from cytogenetics and flow cytometry was also tested for the first time in oysters, by assessing the ploidy of individuals using both techniques. Results between the two were non-concordant.


2020 ◽  
Vol 640 ◽  
pp. 79-105
Author(s):  
ET Porter ◽  
E Robins ◽  
S Davis ◽  
R Lacouture ◽  
JC Cornwell

Anthropogenic disturbances in the Chesapeake Bay (USA) have depleted eastern oyster Crassostrea virginica abundance and altered the estuary’s environment and water quality. Efforts to rehabilitate oyster populations are underway; however, the effect of oyster biodeposits on water quality and plankton community structure are not clear. In July 2017, we used 6 shear turbulence resuspension mesocosms (STURMs) to determine differences in plankton composition with and without the daily addition of oyster biodeposits to a muddy sediment bottom. STURM systems had a volume-weighted root mean square turbulent velocity of 1.08 cm s-1, energy dissipation rate of ~0.08 cm2 s-3, and bottom shear stress of ~0.36-0.51 Pa during mixing-on periods during 4 wk of tidal resuspension. Phytoplankton increased their chlorophyll a content in their cells in response to low light in tanks with biodeposits. The diatom Skeletonema costatum bloomed and had significantly longer chains in tanks without biodeposits. These tanks also had significantly lower concentrations of total suspended solids, zooplankton carbon, and nitrite +nitrate, and higher phytoplankton carbon concentrations. Results suggest that the absence of biodeposit resuspension initiates nitrogen uptake for diatom reproduction, increasing the cell densities of S. costatum. The low abundance of the zooplankton population in non-biodeposit tanks suggests an inability of zooplankton to graze on S. costatum and negative effects of S. costatum on zooplankton. A high abundance of the copepod Acartia tonsa in biodeposit tanks may have reduced S. costatum chain length. Oyster biodeposit addition and resuspension efficiently transferred phytoplankton carbon to zooplankton carbon, thus supporting the food web in the estuary.


Author(s):  
Kevin M. Johnson ◽  
Hollis R. Jones ◽  
Sandra M. Casas ◽  
Jerome F. La Peyre ◽  
Morgan W. Kelly

Aquaculture ◽  
2020 ◽  
Vol 529 ◽  
pp. 735649
Author(s):  
Alexandra J. McCarty ◽  
K. McFarland ◽  
J. Small ◽  
S.K. Allen ◽  
L.V. Plough

2009 ◽  
Vol 28 (2) ◽  
pp. 193-220 ◽  
Author(s):  
Roger Mann ◽  
Melissa Southworth ◽  
Juliana M. Harding ◽  
James A. Wesson

Sign in / Sign up

Export Citation Format

Share Document