scholarly journals Fingerprint construction through genotyping by sequencing for applied breeding in Brassica rapa

Genome ◽  
2021 ◽  
Author(s):  
Guoliang Li ◽  
Lixin Yue ◽  
Xu Cai ◽  
Fei Li ◽  
Hui Zhang ◽  
...  

This study evaluated genotyping by sequencing (GBS) protocol for fingerprinting Brassica rapa and the data derived were more reliable than the re-sequencing data of B. rapa. Of the 10 enzyme solutions used to analyze the numbers of genotypes and single nucleotide polymorphisms (SNPs) in B. rapa, five solutions showed better results, namely: A (HaeIII, 450–500 bp), E (RsaI+HaeIII, 500–550 bp), F (RsaI+HaeIII, 500–600 bp), G (RsaI+HaeIII, ‘All’ fragment), and J (RsaI+EcoRV-HF®, ‘All’ fragment). The five enzyme solutions showed less than 40% similarity in different individuals from various samples, and 90% similarity in between two individuals from one sample. The E enzyme solution was most suitable for fingerprinting B. rapa revealing well-distributed SNPs in the whole genome. Of the 82 highly inbred lines and 18 F1 lines of B. rapa sequenced by GBS in E enzyme solution, known parents of 10 F1 lines were verified and male parents were discovered for 8 F1 lines that had only known female parents. This study provided a valuable method for screening parents for F1 lines in B. rapa for applied breeding through efficient evaluation of GBS with varied library construction strategies.

2021 ◽  
Author(s):  
Scott T O’Donnell ◽  
Sorel T Fitz-Gibbon ◽  
Victoria L Sork

Abstract Ancient introgression can be an important source of genetic variation that shapes the evolution and diversification of many taxa. Here, we estimate the timing, direction and extent of gene flow between two distantly related oak species in the same section (Quercus sect. Quercus). We estimated these demographic events using genotyping by sequencing data (GBS), which generated 25,702 single nucleotide polymorphisms (SNPs) for 24 individuals of California scrub oak (Quercus berberidifolia) and 23 individuals of Engelmann oak (Q. engelmannii). We tested several scenarios involving gene flow between these species using the diffusion approximation-based population genetic inference framework and model-testing approach of the Python package DaDi. We found that the most likely demographic scenario includes a bottleneck in Q. engelmannii that coincides with asymmetric gene flow from Q. berberidifolia into Q. engelmannii. Given that the timing of this gene flow coincides with the advent of a Mediterranean-type climate in the California Floristic Province, we propose that changing precipitation patterns and seasonality may have favored the introgression of climate-associated genes from the endemic into the non-endemic California oak.


2019 ◽  
Vol 123 (7) ◽  
pp. 1231-1251 ◽  
Author(s):  
Dalel Ahmed ◽  
Aurore Comte ◽  
Franck Curk ◽  
Gilles Costantino ◽  
François Luro ◽  
...  

Abstract Background and Aims Reticulate evolution, coupled with reproductive features limiting further interspecific recombinations, results in admixed mosaics of large genomic fragments from the ancestral taxa. Whole-genome sequencing (WGS) data are powerful tools to decipher such complex genomes but still too costly to be used for large populations. The aim of this work was to develop an approach to infer phylogenomic structures in diploid, triploid and tetraploid individuals from sequencing data in reduced genome complexity libraries. The approach was applied to the cultivated Citrus gene pool resulting from reticulate evolution involving four ancestral taxa, C. maxima, C. medica, C. micrantha and C. reticulata. Methods A genotyping by sequencing library was established with the restriction enzyme ApeKI applying one base (A) selection. Diagnostic single nucleotide polymorphisms (DSNPs) for the four ancestral taxa were mined in 29 representative varieties. A generic pipeline based on a maximum likelihood analysis of the number of read data was established to infer ancestral contributions along the genome of diploid, triploid and tetraploid individuals. The pipeline was applied to 48 diploid, four triploid and one tetraploid citrus accessions. Key Results Among 43 598 mined SNPs, we identified a set of 15 946 DSNPs covering the whole genome with a distribution similar to that of gene sequences. The set efficiently inferred the phylogenomic karyotype of the 53 analysed accessions, providing patterns for common accessions very close to that previously established using WGS data. The complex phylogenomic karyotypes of 21 cultivated citrus, including bergamot, triploid and tetraploid limes, were revealed for the first time. Conclusions The pipeline, available online, efficiently inferred the phylogenomic structures of diploid, triploid and tetraploid citrus. It will be useful for any species whose reproductive behaviour resulted in an interspecific mosaic of large genomic fragments. It can also be used for the first generations of interspecific breeding schemes.


2014 ◽  
Vol 35 (21-22) ◽  
pp. 3102-3110 ◽  
Author(s):  
Anneleen Van Geystelen ◽  
Tom Wenseleers ◽  
Ronny Decorte ◽  
Maarten J. L. Caspers ◽  
Maarten H. D. Larmuseau

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1042
Author(s):  
Zhuoying Weng ◽  
Yang Yang ◽  
Xi Wang ◽  
Lina Wu ◽  
Sijie Hua ◽  
...  

Pedigree information is necessary for the maintenance of diversity for wild and captive populations. Accurate pedigree is determined by molecular marker-based parentage analysis, which may be influenced by the polymorphism and number of markers, integrity of samples, relatedness of parents, or different analysis programs. Here, we described the first development of 208 single nucleotide polymorphisms (SNPs) and 11 microsatellites for giant grouper (Epinephelus lanceolatus) taking advantage of Genotyping-by-sequencing (GBS), and compared the power of SNPs and microsatellites for parentage and relatedness analysis, based on a mixed family composed of 4 candidate females, 4 candidate males and 289 offspring. CERVUS, PAPA and COLONY were used for mutually verification. We found that SNPs had a better potential for relatedness estimation, exclusion of non-parentage and individual identification than microsatellites, and > 98% accuracy of parentage assignment could be achieved by 100 polymorphic SNPs (MAF cut-off < 0.4) or 10 polymorphic microsatellites (mean Ho = 0.821, mean PIC = 0.651). This study provides a reference for the development of molecular markers for parentage analysis taking advantage of next-generation sequencing, and contributes to the molecular breeding, fishery management and population conservation.


Author(s):  
Emmanuel Lecorche ◽  
Côme Daniau ◽  
Kevin La ◽  
Faiza Mougari ◽  
Hanaa Benmansour ◽  
...  

Abstract Background Post-surgical infections due to Mycobacterium chimaera appeared as a novel nosocomial threat in 2015, with a worldwide outbreak due to contaminated heater-cooler units used in open chest surgery. We report the results of investigations conducted in France including whole genome sequencing comparison of patient and HCU isolates. Methods We sought M. chimaera infection cases from 2010 onwards through national epidemiological investigations in healthcare facilities performing cardiopulmonary bypass together with a survey on good practices and systematic heater-cooler unit microbial analyses. Clinical and HCU isolates were subjected to whole genome sequencing analyzed with regards to the reference outbreak strain Zuerich-1. Results Only two clinical cases were shown to be related to the outbreak, although 23% (41/175) heater-cooler units were declared positive for M. avium complex. Specific measures to prevent infection were applied in 89% (50/56) healthcare facilities although only 14% (8/56) of them followed the manufacturer maintenance recommendations. Whole genome sequencing comparison showed that the clinical isolates and 72% (26/36) of heater-cooler unit isolates belonged to the epidemic cluster. Within clinical isolates, 5 to 9 non-synonymous single nucleotide polymorphisms were observed, among which an in vivo mutation in a putative efflux pump gene observed in a clinical isolate obtained for one patient under antimicrobial treatment. Conclusions Cases of post-surgical M. chimaera infections were declared to be rare in France, although heater-cooler units were contaminated as in other countries. Genomic analyses confirmed the connection to the outbreak and identified specific single nucleotide polymorphisms, including one suggesting fitness evolution in vivo.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 258
Author(s):  
Karim Karimi ◽  
Duy Ngoc Do ◽  
Mehdi Sargolzaei ◽  
Younes Miar

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant (p < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size (Ne) at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average r2 reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1074
Author(s):  
Joanna Grzegorczyk ◽  
Artur Gurgul ◽  
Maria Oczkowicz ◽  
Tomasz Szmatoła ◽  
Agnieszka Fornal ◽  
...  

Poland is the largest European producer of goose, while goose breeding has become an essential and still increasing branch of the poultry industry. The most frequently bred goose is the White Kołuda® breed, constituting 95% of the country’s population, whereas geese of regional varieties are bred in smaller, conservation flocks. However, a goose’s genetic diversity is inaccurately explored, mainly because the advantages of the most commonly used tools are strongly limited in non-model organisms. One of the most accurate used markers for population genetics is single nucleotide polymorphisms (SNP). A highly efficient strategy for genome-wide SNP detection is genotyping-by-sequencing (GBS), which has been already widely applied in many organisms. This study attempts to use GBS in 12 conservative goose breeds and the White Kołuda® breed maintained in Poland. The GBS method allowed for the detection of 3833 common raw SNPs. Nevertheless, after filtering for read depth and alleles characters, we obtained the final markers panel used for a differentiation analysis that comprised 791 SNPs. These variants were located within 11 different genes, and one of the most diversified variants was associated with the EDAR gene, which is especially interesting as it participates in the plumage development, which plays a crucial role in goose breeding.


Sign in / Sign up

Export Citation Format

Share Document