Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage

2010 ◽  
Vol 35 (3) ◽  
pp. 270-277 ◽  
Author(s):  
Emma Cockburn ◽  
Emma Stevenson ◽  
Philip R. Hayes ◽  
Paula Robson-Ansley ◽  
Glyn Howatson

Exercise-induced muscle damage (EIMD) leads to decrements in muscle performance and increases in intramuscular enzymes measured in the plasma, and to delayed onset of muscle soreness (DOMS), partly due to the activation of degradative pathways. It has been shown that milk-based carbohydrate-protein (CHO-P) can limit changes in markers of EIMD, possibly by attenuating protein degradation and (or) increasing protein synthesis. However, the timing of supplementation has received limited attention, and this may alter the response. This study examined the effects of acute milk-based CHO-P supplementation timing on the attenuation of EIMD. Four independent matched groups of 8 healthy males consumed milk-based CHO-P before (PRE), immediately after (POST), or 24 h after (TWENTY-FOUR) muscle-damaging exercise. Active DOMS, isokinetic muscle performance, reactive strength index (RSI), and creatine kinase (CK) were assessed immediately before and 24, 48, and 72 h after EIMD. POST and TWENTY-FOUR demonstrated a benefit in limiting changes in active DOMS, peak torque, and RSI over 48 h, compared with PRE. PRE showed a possible benefit in reducing increases in CK over 48 h and limiting changes in other variables over 72 h. Consuming milk-based CHO-P after muscle-damaging exercise is more beneficial in attenuating decreases in muscle performance and increases in active DOMS at 48 h than ingestion prior to exercise.

2008 ◽  
Vol 33 (4) ◽  
pp. 775-783 ◽  
Author(s):  
Emma Cockburn ◽  
Philip R. Hayes ◽  
Duncan N. French ◽  
Emma Stevenson ◽  
Alan St Clair Gibson

Exercise-induced muscle damage (EIMD) leads to the degradation of protein structures within the muscle. This may subsequently lead to decrements in muscle performance and increases in intramuscular enzymes and delayed-onset muscle soreness (DOMS). Milk, which provides protein and carbohydrate (CHO), may lead to the attenuation of protein degradation and (or) an increase in protein synthesis that would limit the consequential effects of EIMD. This study examined the effects of acute milk and milk-based protein–CHO (CHO-P) supplementation on attenuating EIMD. Four independent groups of 6 healthy males consumed water (CON), CHO sports drink, milk-based CHO-P or milk (M), post EIMD. DOMS, isokinetic muscle performance, creatine kinase (CK), and myoglobin (Mb) were assessed immediately before and 24 and 48 h after EIMD. DOMS was not significantly different (p > 0.05) between groups at any time point. Peak torque (dominant) was significantly higher (p < 0.05) 48 h after CHO-P compared with CHO and CON, and M compared with CHO. Total work of the set (dominant) was significantly higher (p < 0.05) 48 h after CHO-P and M compared with CHO and CON. CK was significantly lower (p < 0.05) 48 h after CHO-P and M compared with CHO. Mb was significantly lower (p < 0.05) 48 h after CHO-P compared with CHO. At 48 h post-EIMD, milk and milk-based protein–CHO supplementation resulted in the attenuation of decreases in isokinetic muscle performance and increases in CK and Mb.


2019 ◽  
Vol 127 (3) ◽  
pp. 798-805 ◽  
Author(s):  
Hou-Yu Chen ◽  
Yung-Chih Chen ◽  
Kang Tung ◽  
Hsiao-Han Chao ◽  
Ho-Seng Wang

The present study aims to investigate effects of caffeine ingestion and sex difference on muscle performance, delayed-onset muscle soreness (DOMS), and various biomarkers under exercise-induced muscle damage (EIMD). Twenty (10 male and 10 female) healthy elite college athletes were recruited. Participants ingested either caffeine (6 mg/kg) or a placebo in a randomized, double-blind, and counterbalanced fashion at 24 and 48 h following EIMD. Muscle performance, DOMS, and blood samples were taken an hour before and an hour after supplementation. Caffeine ingestion restored impaired maximal voluntary isometric contractions (MVIC: 10.2%; MVICpost: 7.2%, both P < 0.05) during EIMD across both sexes. Following caffeine ingestion during MVIC, while affected by EIMD, an interaction was found in DOMS and serum K+ (both P < 0.05), with males showing greater attenuation (21.5 and 16.9%, respectively) compared with females (4.6 and 1.3%, respectively). DOMS demonstrated an inverse correlation with MVIC after caffeine ingestion both overall and among male athletes ( r = −0.34 and −0.54, respectively; P < 0.05) but not among female athletes ( r = −0.11; P > 0.05) under EIMD. In addition, caffeine ingestion increased postexercise serum glucose and lactate concentrations across both sexes (both P < 0.05). This is the first study to show that male athletes, compared with female athletes, experience a greater reduction in DOMS during enhanced MVIC when caffeine was consumed, suggesting men might receive greater ergogenic effects from caffeine when affected by EIMD. Furthermore, caffeine ingestion was able to restore impaired muscle power among elite collegiate athletes across both sexes. NEW & NOTEWORTHY Exercise-induced muscle damage (EIMD) reduces anaerobic/aerobic performance and increases delayed-onset muscle soreness (DOMS) during exercise. We show that acute caffeine supplementation at a dosage of 6 mg/kg seems to facilitate recovery of anaerobic muscle power and attenuate DOMS after EIMD across both sexes. Furthermore, male athletes, compared with female athletes, when caffeine was prescribed, experience a greater reduction in DOMS with better restoration of impaired maximal voluntary isometric contractions. This suggests that male athletes might benefit from the ergogenic effect of acute caffeine supplementation after the onset of EIMD.


2020 ◽  
Vol 41 (09) ◽  
pp. 596-602
Author(s):  
Maria Alejandra Camacho ◽  
Esperanza Herrera ◽  
Jose Angelo Barela ◽  
Diana Carolina Delgado-Diaz

AbstractThis study aimed at determining the effect of kinesio-taping (KT) on muscle performance and delayed onset muscle soreness (DOMS) after exercise induced muscle damaged. Sixty-six healthy men volunteered to participate (age:18–25 y/o), who performed 200 isokinetic lengthening contractions of the dominant quadriceps. Then subjects were randomized to either control (no treatment), sham (no tape tension), or KT (10% tape tension) groups. Muscle performance was assessed by peak torque and muscular work during maximal isometric and concentric isokinetic contractions. DOMS intensity was assessed using a visual analog scale. Measurements were taken pre-exercise (Pre), 48 h and 96 h post-exercise. Repeated measures ANOVA was used for comparisons within group, and ANCOVA for comparisons among groups. Muscle damage was confirmed in all participants by an increase in CK activity level (p<0.01). Decrease in isometric and isokinetic peak torque was detected at 48 h in the control and sham groups (p<0.01). Muscular work decreased in all groups at 48 h (p<0.01). No differences between groups were detected in muscular performance variables. Increase in DOMS intensity was determined in all groups at 48 h. Comparisons between groups showed lower DOMS intensity in the KT group at 48 h. KT decreased DOMS intensity perception after exercise-induced muscle damage; however, it did not impact muscular performance.


Author(s):  
R Candia Luján ◽  
RA Paredes Carrera ◽  
O Costa Moreira ◽  
KF Candia Sosa ◽  
JA De Paz Fernández

El masaje es una de las terapias más utilizadas para aliviar el dolor muscular tardío (DMT). El objetivo del presente estudio fue determinar la efectividad del masaje en el tratamiento del DMT, para lo cual se llevó a cabo una revisión sistemática en las bases de datos, Pubmed, Scopus, SportDiscus, Web of Science y el buscador Google académico, usando las palabras clave delayed onset muscle soreness y exercise induced muscle damage combinado con massage. Se incluyeron en el estudio 23 artículos en los cuales el 78% mostró disminución del DMT mientras que en el restante 22% no hubo mejoras o bien empeoró. El análisis de los estudios permite concluir que el masaje es una terapia efectiva en el tratamiento del dolor muscular tardío.


2019 ◽  
Vol 89 (5-6) ◽  
pp. 348-356 ◽  
Author(s):  
Michael V. Fedewa ◽  
Steven O. Spencer ◽  
Tyler D. Williams ◽  
Zachery E. Becker ◽  
Collin A. Fuqua

Abstract. Delayed onset muscle soreness (DOMS) is a symptom of exercise-induced muscle damage that occurs following exercise. Previous research has indicated that branched-chain amino acid (BCAA) supplementation may attenuate exercise-induced muscle damage that causes delayed onset muscle soreness, however the results are inconsistent. The primary aim of this study was to examine the previous literature assessing the effect of BCAA supplementation on DOMS following an acute bout of exercise in adults. This review was conducted in accordance with PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-analyses), and identified peer-reviewed articles comparing a BCAA supplement to a placebo non-BCAA supplement following an acute bout of exercise. An electronic search of three databases (EbscoHost, Web of Science, and SPORTDiscus) yielded 42 articles after duplicates were removed. All studies included in the current analyis were: 1) peer-reviewed publications; 2) available in English; 3) utilized a random control design that compared a BCAA group to a placebo control group following exercise; 4) and assessed soreness of muscle tissue during recovery. DOMS was assessed in 61 participants following ingestion of a BCAA supplement over the course of these interventions. The cumulative results of 37 effects gathered from 8 studies published between 2007 and 2017 indicated that BCAA supplementation reduced DOMS following exercise training (ES = 0.7286, 95% CI: 0.5017 to 0.9555, p < 0.001). A large decrease in DOMS occurs following BCAA supplementation after exercise compared to a placebo supplement.


2007 ◽  
Vol 21 (3) ◽  
pp. 661-667 ◽  
Author(s):  
TRAVIS W. BECK ◽  
TERRY J. HOUSH ◽  
GLEN O. JOHNSON ◽  
RICHARD J. SCHMIDT ◽  
DONA J. HOUSH ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3559
Author(s):  
Aggelos Pappas ◽  
Athanasios Tsiokanos ◽  
Ioannis Fatouros ◽  
Athanasios Poulios ◽  
Dimitris Kouretas ◽  
...  

Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.


Sign in / Sign up

Export Citation Format

Share Document