The Ventilatory Response to Hypoxia Below the Carbon Dioxide Threshold

1997 ◽  
Vol 22 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Theodore Rapanos ◽  
James Duffin

The ventilatory response to acute progressive hypoxia below the carbon dioxide threshold using rebreathing was investigated. Nine subjects rebreathed after 5 min of hyperventilation to lower carbon dioxide stores. The rebreathing bag initially contained enough carbon dioxide to equilibrate alveolar and arterial partial pressures of carbon dioxide to the lowered mixed venous partial pressure (≈ 30 mmHg), and enough oxygen to establish a chosen end-tidal partial pressure (50-70 mmHg), within one circulation time. During rebreathing, end-tidal partial pressure of carbon dioxide increased while end-tidal partial pressure of oxygen fell. Ventilation increased linearly with end-tidal carbon dioxide above a mean end-tidal partial pressure threshold of 39 ± 2.7 mmHg. Below this peripheral-chemoreflex threshold, ventilation did not increase, despite a progressive fall in end-tidal oxygen partial pressure to a mean of 37 ± 4.1 mmHg. In Conclusion, hypoxia does not stimulate ventilation when carbon dioxide is below its peripheral-chemoreflex threshold. Key words: peripheral chemoreflex, rebreathing technique, hyperventilation

1995 ◽  
Vol 83 (3) ◽  
pp. 478-490. ◽  
Author(s):  
Maarten van den Elsen ◽  
Albert Dahan ◽  
Jacob DeGoede ◽  
Aad Berkenbosch ◽  
Jack van Kleef

Background The purpose of this study was to quantify in humans the effects of subanesthetic isoflurane on the ventilatory control system, in particular on the peripheral chemoreflex loop. Therefore we studied the dynamic ventilatory response to carbon dioxide, the effect of isoflurane wash-in upon sustained hypoxic steady-state ventilation, and the ventilatory response at the onset of 20 min of isocapnic hypoxia. Methods Study 1: Square-wave changes in end-tidal carbon dioxide tension (7.5-11.5 mmHg) were performed in eight healthy volunteers at 0 and 0.1 minimum alveolar concentration (MAC) isoflurane. Each hypercapnic response was separated into a fast, peripheral component and a slow, central component, characterized by a time constant, carbon dioxide sensitivity, time delay, and off-set (apneic threshold). Study 2: The ventilatory changes due to the wash-in of 0.1 MAC isoflurane, 15 min after the induction of isocapnic hypoxia, were studied in 11 healthy volunteers. Study 3: The ventilatory responses to a step decrease in end-tidal oxygen (end-tidal oxygen tension from 110 to 44 mmHg within 3-4 breaths; duration of hypoxia 20 min) were assessed in eight healthy volunteers at 0, 0.1, and 0.2 MAC isoflurane. Results Values are reported as means +/- SF. Study 1: The peripheral carbon dioxide sensitivities averaged 0.50 +/- 0.08 (control) and 0.28 +/- 0.05 l.min-1.mmHg-1 (isoflurane; P < 0.01). The central carbon dioxide sensitivities (control 1.20 +/- 0.12 vs. isoflurane 1.04 +/- 0.11 l.min-1.mmHg-1) and off-sets (control 36.0 +/- 0.1 mmHg vs. isoflurane 34.5 +/- 0.2 mmHg) did not differ between treatments. Study 2: Within 30 s of exposure to 0.1 MAC isoflurane, ventilation decreased significantly, from 17.7 +/- 1.6 (hypoxia, awake) to 15.0 +/- 1.5 l.min-1 (hypoxia, isoflurane). Study 3: At the initiation of hypoxia ventilation increased by 7.7 +/- 1.4 (control), 4.1 +/- 0.8 (0.1 MAC; P < 0.05 vs. control), and 2.8 +/- 0.6 (0.2 MAC; P < 0.05 vs. control) l.min-1. The subsequent ventilatory decrease averaged 4.9 +/- 0.8 (control), 3.4 +/- 0.5 (0.1 MAC; difference not statistically significant), and 2.0 +/- 0.4 (0.2 MAC; P < 0.05 vs. control) l.min-1. There was a good correlation between the acute hypoxic response and the hypoxic ventilatory decrease (r = 0.9; P < 0.001). Conclusions The results of all three studies indicate a selective and profound effect of subanesthetic isoflurane on the peripheral chemoreflex loop at the site of the peripheral chemoreceptors. We relate the reduction of the ventilatory decrease of sustained hypoxia to the decrease of the initial ventilatory response to hypoxia.


1975 ◽  
Vol 39 (4) ◽  
pp. 548-551 ◽  
Author(s):  
A. S. Rebuck ◽  
M. Betts ◽  
N. A. Saunders

Ventilatory responses to isocapnic hypoxia, with and without an inspiratory elastic load (12.1 cmH2O/l), were measured in seven healthy subjects using a rebreathing technique. During each experiment, the end-tidal PCO2 was held constant using a variable-speed pump to draw gas from the rebreathing bag through a CO2 absorbing bypass. Studies with and without the load were performed in a formally randomized order for each subject. Linear regressions for rise in ventilation against fall in SaO2 were calculated. The range of unloaded responses was 0.74–1.38 1/min per 1% fall in SaO2 and loaded responses 0.71–1.56 1/min per 1% fall in SaO2. Elastic loading did not significantly alter the ventilatory response to progressive hypoxia (P greater than 0.2). In all subjects there was, however, a change in breathing pattern during loading, whereby increments in ventilation were attained by smaller tidal volumes and higher frequencies than in the control experiments. These results support the hypothesis previously proposed in our studies of resistive loading during progressive hypoxia, that a similar control pathway appears to be involved in response to the application of loads to breathing, whether ventilation is stimulated by hypoxia or hypercapnia.


2004 ◽  
Vol 96 (3) ◽  
pp. 1197-1205 ◽  
Author(s):  
Jason H. Mateika ◽  
Chris Mendello ◽  
Dany Obeid ◽  
M. Safwan Badr

We hypothesized that the acute ventilatory response to hypoxia is enhanced after exposure to episodic hypoxia in awake humans. Eleven subjects completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then breathed from a bag containing normocapnic (42 Torr), low (50 Torr), or high oxygen (140 Torr) gas mixtures. During the trials, PetCO2 increased while a constant oxygen level was maintained. The point at which ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the ventilatory recruitment threshold. The ventilatory response below and above the recruitment threshold was determined. Ventilation did not persist above baseline values immediately after exposure to episodic hypoxia; however, PetCO2 levels were reduced compared with baseline. In contrast, compared with baseline, the ventilatory response to progressive increases in carbon dioxide during rebreathing trials in the presence of low but not high oxygen levels was increased after exposure to episodic hypoxia. This increase occurred when carbon dioxide levels were above but not below the ventilatory recruitment threshold. We conclude that long-term facilitation of ventilation (i.e., increases in ventilation that persist when normoxia is restored after episodic hypoxia) is not expressed in awake humans in the presence of hypocapnia. Nevertheless, despite this lack of expression, the acute ventilatory response to hypoxia in the presence of hypercapnia is increased after exposure to episodic hypoxia.


1982 ◽  
Vol 53 (4) ◽  
pp. 886-890 ◽  
Author(s):  
R. B. Schoene

Blunted chemosensitivity has been found in successful endurance athletes and some high-altitude natives. This characteristic, however, may not be beneficial to climbers at extreme altitude, where a vigorous ventilatory response to hypoxia may be of value in enhancing alveolar and arterial oxygenation. We studied 14 climbers who had climbed to 7,470 m or higher, 10 age-matched controls, and 10 outstanding middle- and long-distance runners. The ventilatory response to progressive hypoxia was determined at a constant, normal end-tidal Pco2 over 8–12 min and to CO2 by rebreathing a 7% CO2 hyperoxic mixture (Read technique). The hypoxic response parameter of Weil, A was used to determine the hypoxic responses and S (delta VE/ delta PACO2) the hypercapnic response. Climbers had A values significantly higher than the runners (means +/- SE: 158.9 +/- 29.9 vs. 49.3 +/- 7.1, P less than 0.001) but not significantly higher than the controls (109.9 +/- 21.0). delta VE/ delta PACO2 of climbers was higher (3.0 +/- 0.4) than both controls (2.2 +/- 0.2, P less than 0.025) and runners (1.4 +/- 0.2, P less than 0.0005). These data suggest that successful climbers to extreme altitude may be selected by virtue of their vigorous respiratory responses to hypoxia to maintain adequate oxygenation in the presence of extreme environmental hypoxia.


1997 ◽  
Vol 22 (3) ◽  
pp. 256-267 ◽  
Author(s):  
Deep Chatha ◽  
James Duffin

The pattern of breathing following a 10-breath voluntary hyperventilation period during hyperoxic rebreathing was compared to that without hyperventilation in 6 subjects (3 male and 3 female). The aim was to measure the posthyperventilation short-term potentiation of ventilation without changes in respiratory chemoreflex drives induced by the voluntary hyperventilation. Hyperoxia was used to reduce the peripheral chemoreflex drive, and rebreathing to prevent the decrease in arterial carbon dioxide tension normally produced by hyperventilation. There were significant differences between the male and female responses. However, in all subjects, ventilation and heart rate were increased during hyperventilation but end-tidal partial pressures of carbon dioxide and oxygen were unchanged. Following hyperventilation, ventilation immediately returned to the values observed when hyperventilation was omitted. Hyperventilation did not induce a short-term potentiation of ventilation under these conditions: changes in chemoreflex stimuli brought about by cardiovascular changes induced by hyperventilation may play a role in the short-term potentiation observed under other circumstances. Key words: rebreathing, hyperventilation, short-term potentiation


1997 ◽  
Vol 86 (6) ◽  
pp. 1342-1349 ◽  
Author(s):  
Aad Berkenbosch ◽  
Luc J. Teppema ◽  
Cees N. Olievier ◽  
Albert Dahan

Background The ventilatory response to hypoxia is composed of the stimulatory activity from peripheral chemoreceptors and a depressant effect from within the central nervous system. Morphine induces respiratory depression by affecting the peripheral and central carbon dioxide chemoreflex loops. There are only few reports on its effect on the hypoxic response. Thus the authors assessed the effect of morphine on the isocapnic ventilatory response to hypoxia in eight cats anesthetized with alpha-chloralose-urethan and on the ventilatory carbon dioxide sensitivities of the central and peripheral chemoreflex loops. Methods The steady-state ventilatory responses to six levels of end-tidal oxygen tension (PO2) ranging from 375 to 45 mmHg were measured at constant end-tidal carbon dioxide tension (P[ET]CO2, 41 mmHg) before and after intravenous administration of morphine hydrochloride (0.15 mg/kg). Each oxygen response was fitted to an exponential function characterized by the hypoxic sensitivity and a shape parameter. The hypercapnic ventilatory responses, determined before and after administration of morphine hydrochloride, were separated into a slow central and a fast peripheral component characterized by a carbon dioxide sensitivity and a single offset B (apneic threshold). Results At constant P(ET)CO2, morphine decreased ventilation during hyperoxia from 1,260 +/- 140 ml/min to 530 +/- 110 ml/ min (P < 0.01). The hypoxic sensitivity and shape parameter did not differ from control. The ventilatory response to carbon dioxide was displaced to higher P(ET)CO2 levels, and the apneic threshold increased by 6 mmHg (P < 0.01). The central and peripheral carbon dioxide sensitivities decreased by about 30% (P < 0.01). Their ratio (peripheral carbon dioxide sensitivity:central carbon dioxide sensitivity) did not differ for the treatments (control = 0.165 +/- 0.105; morphine = 0.161 +/- 0.084). Conclusions Morphine depresses ventilation at hyperoxia but does not depress the steady-state increase in ventilation due to hypoxia. The authors speculate that morphine reduces the central depressant effect of hypoxia and the peripheral carbon dioxide sensitivity at hyperoxia.


2001 ◽  
Vol 95 (4) ◽  
pp. 889-895 ◽  
Author(s):  
Diederik Nieuwenhuijs ◽  
Elise Sarton ◽  
Luc J. Teppema ◽  
Erik Kruyt ◽  
Ida Olievier ◽  
...  

Background Propofol has a depressant effect on metabolic ventilatory control, causing depression of the ventilatory response to acute isocapnic hypoxia, a response mediated via the peripheral chemoreflex loop. In this study, the authors examined the effect of sedative concentrations of propofol on the dynamic ventilatory response to carbon dioxide to obtain information about the respiratory sites of action of propofol. Methods In 10 healthy volunteers, the end-tidal carbon dioxide concentration was varied according to a multifrequency binary sequence that involved 13 steps into and 13 steps out of hypercapnia (total duration, 1,408 s). In each subject, two control studies, two studies at a plasma target propofol concentration of 0.75 microg/ml (P(low)), and two studies at a target propofol concentration of 1.5 microg/ml (P(high)) were performed. The ventilatory responses were separated into a fast peripheral component and a slow central component, characterized by a time constant, carbon dioxide sensitivity, and apneic threshold. Values are mean +/- SD. Results Plasma propofol concentrations were approximately 0.5 microg/ml for P(low) and approximately 1.3 mg/ml for P(high), Propofol reduced the central carbon dioxide sensitivity from 1.5 +/- 0.4 to 1.2 +/- 0.3 (P(low); P < 0.01 vs. control) and 0.9 +/- 0.1 l x min(-1) x mmHg(-1) (P(high); P < 0.001 vs. control). The peripheral carbon dioxide sensitivity remained unaffected by propofol (control, 0.5 +/- 0.3; P(low), 0.5 +/- 0.2; P(high), 0.5 +/- 0.2 l x min(-1) x mmHg(-1)). The apneic threshold was reduced from 36.3 +/- 2.7 (control) to 35.0 +/- 2.1 (P(low); P < 0.01 vs. control) and to 34.6 +/- 1.9 mmHg (P(high); P < 0.01 vs. control). Conclusions Sedative concentrations of propofol have an important effect on the control of breathing, showing depression of the ventilatory response to hypercapnia. The depression is attributed to an exclusive effect within the central chemoreflex loop at the central chemoreceptors. In contrast to low-dose inhalational anesthetics, the peripheral chemoreflex loop, when stimulated with carbon dioxide, remains unaffected by propofol.


1999 ◽  
Vol 90 (4) ◽  
pp. 1119-1128 ◽  
Author(s):  
Albert Dahan ◽  
Erik Olofsen ◽  
Luc Teppema ◽  
Elise Sarton ◽  
Cees Olievier

Background Inhalational anesthetics depress breathing dose dependently. The authors studied the dynamics of ventilation on changes in end-tidal sevoflurane partial pressure. To learn more about the mechanisms of sevoflurane-induced respiratory depression, the authors also studied its influence on the dynamic ventilatory response to carbon dioxide. Methods Experiments were performed in cats anesthetized with alpha chloralose-urethane. For protocol 1, step changes in end-tidal sevoflurane partial pressure were applied and inspired ventilation was measured. Breath-to-breath inspired ventilation was related to the sevoflurane concentration in a hypothetical effect compartment based on an inhibitory sigmoid Emax model. For protocol 2, step changes in the end-tidal partial pressure of carbon dioxide were applied at 0, 0.5, and 1% end-tidal sevoflurane. The inspired ventilation-end-tidal partial pressure of carbon dioxide data were analyzed using a two-compartment model of the respiratory controller, which consisted of a fast peripheral and slow central compartment. Values are the mean +/- SD. Results In protocol 1, the effect-site half-life of respiratory changes caused by alterations in end-tidal sevoflurane partial pressure was 3.6+/-1.0 min. In protocol 2, at 0.50% sevoflurane, the central and peripheral carbon dioxide sensitivities decreased to 43+/-20% and 36+/-18% of control. At 1% sevoflurane, the peripheral carbon dioxide sensitivity decreased further, to 12+/-13% of control, whereas the central carbon dioxide sensitivity showed no further decrease. Conclusions Steady state inspired ventilation is reached after 18 min (i.e., 5 half-lives) on stepwise changes in end-tidal sevoflurane. Anesthetic concentrations of sevoflurane have, in addition to an effect on pathways common to the peripheral and central chemoreflex loops, a selective effect on the peripheral chemoreflex loop. Sevoflurane has similar effects on ventilatory control in humans and cats.


1996 ◽  
Vol 85 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Albert Dahan ◽  
Elise Sarton ◽  
Maarten van den Elsen ◽  
Jack van Kleef ◽  
Luc Teppema ◽  
...  

Background At low dose, the halogenated anesthetic agents halothane, isoflurane, and enflurane depress the ventilatory response to isocapnic hypoxia in humans. In the current study, the influence of subanesthetic desflurane (0.1 minimum alveolar concentration [MAC]) on the isocapnic hypoxic ventilatory response was assessed in healthy volunteers during normocapnia and hypercapnia. Methods A single hypoxic ventilatory response was obtained at each of 4 target end-tidal partial pressure of oxygen concentrations: 75, 53, 44, and 38 mmHg, before and during 0.1 MAC desflurane administration. Fourteen subjects were tested at a normal end-tidal partial pressure of carbon dioxide (43 mmHg), with 9 subjects tested at an end-tidal carbon dioxide concentration of 49 mmHg (hypercapnia). The hypoxic sensitivity (S) was computed as the slope of the linear regression of inspired minute ventilation (V1) on (100-SPO2). Values are mean +/- SE. Results Sensitivity was unaffected by desflurane during normocapnia (control: S = 0.45 +/- 0.07 l.min-1.%-1 vs. 0.1 MAC desflurane: S = 0.43 +/- 0.09 l.min-1.%-1). With hypercapnia S decreased by 30% during desflurane inhalation (control: S = 0.74 +/- 0.09 l.min-1.%-1 vs. 0.1 MAC desflurane: S = 0.53 +/- 0.06 l.min-1.%-1; P < 0.05). Conclusions On the basis of the data, subanesthetic desflurane has no detectable effect on the normocapnic hypoxic ventilatory response sensitivity. However, the carbon dioxideinduced augmentation of the hypoxic response was reduced. This indicates that subanesthetic desflurane effects the chemoreceptors at the carotid bodies.


1998 ◽  
Vol 89 (3) ◽  
pp. 642-647. ◽  
Author(s):  
H. Daniel Babenco ◽  
Robert T. Blouin ◽  
Pattilyn F. Conard ◽  
Jeffrey B. Gross

Background Diphenhydramine is used as an antipruritic and antiemetic in patients receiving opioids. Whether it might exacerbate opioid-induced ventilatory depression has not been determined. Methods The ventilatory response to carbon dioxide during hyperoxia and the ventilatory response to hypoxia during hypercapnia (end-tidal pressure of carbon dioxide [PETCO2] is approximately equal to 54 mmHg) were determined in eight healthy volunteers. Ventilatory responses to carbon dioxide and hypoxia were calculated at baseline and during an alfentanil infusion (estimated blood levels approximately equal to 10 ng/ml) before and after diphenhydramine 0.7 mg/kg. Results The slope of the ventilatory response to carbon dioxide decreased from 1.08+/-0.38 to 0.79+/-0.36 l x min(-1) x mmHg(-1) (x +/- SD, P < 0.05) during alfentanil infusion; after diphenhydramine, the slope increased to 1.17+/-0.28 l x min(-1) x mmHg(-1) (P < 0.05). The minute ventilation (VE) at PETCO2 approximately equal to 46 mmHg (VE46) decreased from 12.1+/-3.7 to 9.7+/-3.6 l/min (P < 0.05) and the VE at 54 mmHg (VE54) decreased from 21.3+/-4.8 to 16.6+/-4.7 l/min during alfentanil (P < 0.05). After diphenhydramine, (VE46 did not change significantly, remaining lower than baseline at 9.9+/-2.9 l/min (P < 0.05), whereas VE54 increased significantly to 20.5+/-3.0 l/min. During hypoxia, VE at SpO2 = 90% (VE90) decreased from 30.5+/-9.7 to 23.1+/-6.9 l/min during alfentanil (P < 0.05). After diphenhydramine, the increase in VE90 to 27.2+/-9.2 l/min was not significant (P = 0.06). Conclusions Diphenhydramine counteracts the alfentanil-induced decrease in the slope of the ventilatory response to carbon dioxide. However, at PETCO2 = 46 mmHg, it does not significantly alter the alfentanil-induced shift in the carbon dioxide response curve. In addition, diphenhydramine does not exacerbate the opioid-induced depression of the hypoxic ventilatory response during moderate hypercarbia.


Sign in / Sign up

Export Citation Format

Share Document