Effect of elastic loading on ventilatory response to hypoxia in conscious man

1975 ◽  
Vol 39 (4) ◽  
pp. 548-551 ◽  
Author(s):  
A. S. Rebuck ◽  
M. Betts ◽  
N. A. Saunders

Ventilatory responses to isocapnic hypoxia, with and without an inspiratory elastic load (12.1 cmH2O/l), were measured in seven healthy subjects using a rebreathing technique. During each experiment, the end-tidal PCO2 was held constant using a variable-speed pump to draw gas from the rebreathing bag through a CO2 absorbing bypass. Studies with and without the load were performed in a formally randomized order for each subject. Linear regressions for rise in ventilation against fall in SaO2 were calculated. The range of unloaded responses was 0.74–1.38 1/min per 1% fall in SaO2 and loaded responses 0.71–1.56 1/min per 1% fall in SaO2. Elastic loading did not significantly alter the ventilatory response to progressive hypoxia (P greater than 0.2). In all subjects there was, however, a change in breathing pattern during loading, whereby increments in ventilation were attained by smaller tidal volumes and higher frequencies than in the control experiments. These results support the hypothesis previously proposed in our studies of resistive loading during progressive hypoxia, that a similar control pathway appears to be involved in response to the application of loads to breathing, whether ventilation is stimulated by hypoxia or hypercapnia.

1997 ◽  
Vol 22 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Theodore Rapanos ◽  
James Duffin

The ventilatory response to acute progressive hypoxia below the carbon dioxide threshold using rebreathing was investigated. Nine subjects rebreathed after 5 min of hyperventilation to lower carbon dioxide stores. The rebreathing bag initially contained enough carbon dioxide to equilibrate alveolar and arterial partial pressures of carbon dioxide to the lowered mixed venous partial pressure (≈ 30 mmHg), and enough oxygen to establish a chosen end-tidal partial pressure (50-70 mmHg), within one circulation time. During rebreathing, end-tidal partial pressure of carbon dioxide increased while end-tidal partial pressure of oxygen fell. Ventilation increased linearly with end-tidal carbon dioxide above a mean end-tidal partial pressure threshold of 39 ± 2.7 mmHg. Below this peripheral-chemoreflex threshold, ventilation did not increase, despite a progressive fall in end-tidal oxygen partial pressure to a mean of 37 ± 4.1 mmHg. In Conclusion, hypoxia does not stimulate ventilation when carbon dioxide is below its peripheral-chemoreflex threshold. Key words: peripheral chemoreflex, rebreathing technique, hyperventilation


1982 ◽  
Vol 53 (4) ◽  
pp. 886-890 ◽  
Author(s):  
R. B. Schoene

Blunted chemosensitivity has been found in successful endurance athletes and some high-altitude natives. This characteristic, however, may not be beneficial to climbers at extreme altitude, where a vigorous ventilatory response to hypoxia may be of value in enhancing alveolar and arterial oxygenation. We studied 14 climbers who had climbed to 7,470 m or higher, 10 age-matched controls, and 10 outstanding middle- and long-distance runners. The ventilatory response to progressive hypoxia was determined at a constant, normal end-tidal Pco2 over 8–12 min and to CO2 by rebreathing a 7% CO2 hyperoxic mixture (Read technique). The hypoxic response parameter of Weil, A was used to determine the hypoxic responses and S (delta VE/ delta PACO2) the hypercapnic response. Climbers had A values significantly higher than the runners (means +/- SE: 158.9 +/- 29.9 vs. 49.3 +/- 7.1, P less than 0.001) but not significantly higher than the controls (109.9 +/- 21.0). delta VE/ delta PACO2 of climbers was higher (3.0 +/- 0.4) than both controls (2.2 +/- 0.2, P less than 0.025) and runners (1.4 +/- 0.2, P less than 0.0005). These data suggest that successful climbers to extreme altitude may be selected by virtue of their vigorous respiratory responses to hypoxia to maintain adequate oxygenation in the presence of extreme environmental hypoxia.


1986 ◽  
Vol 60 (3) ◽  
pp. 997-1002 ◽  
Author(s):  
D. L. Maxwell ◽  
P. Chahal ◽  
K. B. Nolop ◽  
J. M. Hughes

The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52–55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.


1997 ◽  
Vol 86 (6) ◽  
pp. 1342-1349 ◽  
Author(s):  
Aad Berkenbosch ◽  
Luc J. Teppema ◽  
Cees N. Olievier ◽  
Albert Dahan

Background The ventilatory response to hypoxia is composed of the stimulatory activity from peripheral chemoreceptors and a depressant effect from within the central nervous system. Morphine induces respiratory depression by affecting the peripheral and central carbon dioxide chemoreflex loops. There are only few reports on its effect on the hypoxic response. Thus the authors assessed the effect of morphine on the isocapnic ventilatory response to hypoxia in eight cats anesthetized with alpha-chloralose-urethan and on the ventilatory carbon dioxide sensitivities of the central and peripheral chemoreflex loops. Methods The steady-state ventilatory responses to six levels of end-tidal oxygen tension (PO2) ranging from 375 to 45 mmHg were measured at constant end-tidal carbon dioxide tension (P[ET]CO2, 41 mmHg) before and after intravenous administration of morphine hydrochloride (0.15 mg/kg). Each oxygen response was fitted to an exponential function characterized by the hypoxic sensitivity and a shape parameter. The hypercapnic ventilatory responses, determined before and after administration of morphine hydrochloride, were separated into a slow central and a fast peripheral component characterized by a carbon dioxide sensitivity and a single offset B (apneic threshold). Results At constant P(ET)CO2, morphine decreased ventilation during hyperoxia from 1,260 +/- 140 ml/min to 530 +/- 110 ml/ min (P < 0.01). The hypoxic sensitivity and shape parameter did not differ from control. The ventilatory response to carbon dioxide was displaced to higher P(ET)CO2 levels, and the apneic threshold increased by 6 mmHg (P < 0.01). The central and peripheral carbon dioxide sensitivities decreased by about 30% (P < 0.01). Their ratio (peripheral carbon dioxide sensitivity:central carbon dioxide sensitivity) did not differ for the treatments (control = 0.165 +/- 0.105; morphine = 0.161 +/- 0.084). Conclusions Morphine depresses ventilation at hyperoxia but does not depress the steady-state increase in ventilation due to hypoxia. The authors speculate that morphine reduces the central depressant effect of hypoxia and the peripheral carbon dioxide sensitivity at hyperoxia.


1980 ◽  
Vol 48 (5) ◽  
pp. 892-895 ◽  
Author(s):  
H. E. Jeffery ◽  
D. J. Read

Isocapnic progressive hypoxia was produced by rebreathing 8-10% oxygen in replicate tests during quiet and active sleep, in five full-term calves aged 1-8 days. Airflow through a tightly fitting mask was digitized at 50-ms intervals to calculate breath-by-breath ventilation and rate. Using a cuvette oximeter, arterial O2 saturation (SaO2) was recorded continuously. A mass-spectrometer record of end-tidal PO2 and PCO2 confirmed the mask seal and the constancy of PCO2. Sleep state was characterized by EEG, EOG, neck EMG, and behavior. In quiet sleep the ratio of ventilation to its normoxic control (VR) increased linearly as SaO2 fell; reflex arousal occurred at SaO2 84.9 ± 4.3% (SD) with VR 1.4 ± 0.39 (SD). In contrast, during active sleep, hypoxemia progressed without any ventilatory response to a very low SaO2; a reflex arousal occurred at SaO2 59.2 ±11.0%, often with a ventilatory response developing abruptly just prior to arousal. The slope of the VR/SaO2 regression lines for the overlapping range of SaO2 differed significantly with state in each animal (P < 0.001); the pooled VR values at SaO2 75% were 1.73± 0.15 (SD) and 0.91 ± 0.18 for quiet and active sleep respectively. The depression of the ventilatory response to hypoxia in active sleep differs from previous reports on adult dogs. The basis for this difference needs to be evaluated in relation to species and age, in particular in relation to both the mechanics of breathing and to chemoreceptor reflexes.


1995 ◽  
Vol 83 (3) ◽  
pp. 478-490. ◽  
Author(s):  
Maarten van den Elsen ◽  
Albert Dahan ◽  
Jacob DeGoede ◽  
Aad Berkenbosch ◽  
Jack van Kleef

Background The purpose of this study was to quantify in humans the effects of subanesthetic isoflurane on the ventilatory control system, in particular on the peripheral chemoreflex loop. Therefore we studied the dynamic ventilatory response to carbon dioxide, the effect of isoflurane wash-in upon sustained hypoxic steady-state ventilation, and the ventilatory response at the onset of 20 min of isocapnic hypoxia. Methods Study 1: Square-wave changes in end-tidal carbon dioxide tension (7.5-11.5 mmHg) were performed in eight healthy volunteers at 0 and 0.1 minimum alveolar concentration (MAC) isoflurane. Each hypercapnic response was separated into a fast, peripheral component and a slow, central component, characterized by a time constant, carbon dioxide sensitivity, time delay, and off-set (apneic threshold). Study 2: The ventilatory changes due to the wash-in of 0.1 MAC isoflurane, 15 min after the induction of isocapnic hypoxia, were studied in 11 healthy volunteers. Study 3: The ventilatory responses to a step decrease in end-tidal oxygen (end-tidal oxygen tension from 110 to 44 mmHg within 3-4 breaths; duration of hypoxia 20 min) were assessed in eight healthy volunteers at 0, 0.1, and 0.2 MAC isoflurane. Results Values are reported as means +/- SF. Study 1: The peripheral carbon dioxide sensitivities averaged 0.50 +/- 0.08 (control) and 0.28 +/- 0.05 l.min-1.mmHg-1 (isoflurane; P &lt; 0.01). The central carbon dioxide sensitivities (control 1.20 +/- 0.12 vs. isoflurane 1.04 +/- 0.11 l.min-1.mmHg-1) and off-sets (control 36.0 +/- 0.1 mmHg vs. isoflurane 34.5 +/- 0.2 mmHg) did not differ between treatments. Study 2: Within 30 s of exposure to 0.1 MAC isoflurane, ventilation decreased significantly, from 17.7 +/- 1.6 (hypoxia, awake) to 15.0 +/- 1.5 l.min-1 (hypoxia, isoflurane). Study 3: At the initiation of hypoxia ventilation increased by 7.7 +/- 1.4 (control), 4.1 +/- 0.8 (0.1 MAC; P &lt; 0.05 vs. control), and 2.8 +/- 0.6 (0.2 MAC; P &lt; 0.05 vs. control) l.min-1. The subsequent ventilatory decrease averaged 4.9 +/- 0.8 (control), 3.4 +/- 0.5 (0.1 MAC; difference not statistically significant), and 2.0 +/- 0.4 (0.2 MAC; P &lt; 0.05 vs. control) l.min-1. There was a good correlation between the acute hypoxic response and the hypoxic ventilatory decrease (r = 0.9; P &lt; 0.001). Conclusions The results of all three studies indicate a selective and profound effect of subanesthetic isoflurane on the peripheral chemoreflex loop at the site of the peripheral chemoreceptors. We relate the reduction of the ventilatory decrease of sustained hypoxia to the decrease of the initial ventilatory response to hypoxia.


1998 ◽  
Vol 89 (3) ◽  
pp. 642-647. ◽  
Author(s):  
H. Daniel Babenco ◽  
Robert T. Blouin ◽  
Pattilyn F. Conard ◽  
Jeffrey B. Gross

Background Diphenhydramine is used as an antipruritic and antiemetic in patients receiving opioids. Whether it might exacerbate opioid-induced ventilatory depression has not been determined. Methods The ventilatory response to carbon dioxide during hyperoxia and the ventilatory response to hypoxia during hypercapnia (end-tidal pressure of carbon dioxide [PETCO2] is approximately equal to 54 mmHg) were determined in eight healthy volunteers. Ventilatory responses to carbon dioxide and hypoxia were calculated at baseline and during an alfentanil infusion (estimated blood levels approximately equal to 10 ng/ml) before and after diphenhydramine 0.7 mg/kg. Results The slope of the ventilatory response to carbon dioxide decreased from 1.08+/-0.38 to 0.79+/-0.36 l x min(-1) x mmHg(-1) (x +/- SD, P &lt; 0.05) during alfentanil infusion; after diphenhydramine, the slope increased to 1.17+/-0.28 l x min(-1) x mmHg(-1) (P &lt; 0.05). The minute ventilation (VE) at PETCO2 approximately equal to 46 mmHg (VE46) decreased from 12.1+/-3.7 to 9.7+/-3.6 l/min (P &lt; 0.05) and the VE at 54 mmHg (VE54) decreased from 21.3+/-4.8 to 16.6+/-4.7 l/min during alfentanil (P &lt; 0.05). After diphenhydramine, (VE46 did not change significantly, remaining lower than baseline at 9.9+/-2.9 l/min (P &lt; 0.05), whereas VE54 increased significantly to 20.5+/-3.0 l/min. During hypoxia, VE at SpO2 = 90% (VE90) decreased from 30.5+/-9.7 to 23.1+/-6.9 l/min during alfentanil (P &lt; 0.05). After diphenhydramine, the increase in VE90 to 27.2+/-9.2 l/min was not significant (P = 0.06). Conclusions Diphenhydramine counteracts the alfentanil-induced decrease in the slope of the ventilatory response to carbon dioxide. However, at PETCO2 = 46 mmHg, it does not significantly alter the alfentanil-induced shift in the carbon dioxide response curve. In addition, diphenhydramine does not exacerbate the opioid-induced depression of the hypoxic ventilatory response during moderate hypercarbia.


1989 ◽  
Vol 67 (5) ◽  
pp. 1754-1758 ◽  
Author(s):  
H. Kimura ◽  
M. Mikami ◽  
T. Kuriyama ◽  
Y. Fukuda

Effects on ventilatory responses to progressive isocapnic hypoxia of a synthetic potent progestin, chlormadinone acetate (CMA), were determined in the halothane-anesthetized male rat. Ventilation during the breathing of hyperoxic gas was largely unaffected by treatment with CMA when carotid chemoreceptor afferents were kept intact. The sensitivity to hypoxia evaluated by hyperbolic regression analysis of the response curve did not differ between the control and CMA groups. The reduction of ventilation after bilateral section of the carotid sinus nerve (CSN) in hyperoxia was less severe in CMA-treated than in untreated animals. Furthermore, the CMA-treated rats showed a larger increase in ventilation during the hypoxia test and a lower PO2 break point for ventilatory depression. Inhibition of hypoxic ventilatory depression by CMA persisted even after the denervation of CSN. We conclude that exogenous progestin likely protects regulatory mechanism(s) for respiration against hypoxic depression through a stimulating action independent of carotid chemoreceptor afferents and without a change in the sensitivity of the ventilatory response to hypoxia.


2004 ◽  
Vol 97 (5) ◽  
pp. 1673-1680 ◽  
Author(s):  
Chris Morelli ◽  
M. Safwan Badr ◽  
Jason H. Mateika

We hypothesized that the acute ventilatory response to carbon dioxide in the presence of low and high levels of oxygen would increase to a greater extent in men compared with women after exposure to episodic hypoxia. Eleven healthy men and women of similar race, age, and body mass index completed a series of rebreathing trials before and after exposure to eight 4-min episodes of hypoxia. During the rebreathing trials, subjects initially hyperventilated to reduce the end-tidal partial pressure of carbon dioxide (PetCO2) below 25 Torr. Subjects then rebreathed from a bag containing a normocapnic (42 Torr), low (50 Torr), or high oxygen gas mixture (150 Torr). During the trials, PetCO2 increased while the selected level of oxygen was maintained. The point at which minute ventilation began to rise in a linear fashion as PetCO2 increased was considered to be the carbon dioxide set point. The ventilatory response below and above this point was determined. The results showed that the ventilatory response to carbon dioxide above the set point was increased in men compared with women before exposure to episodic hypoxia, independent of the oxygen level that was maintained during the rebreathing trials (50 Torr: men, 5.19 ± 0.82 vs. women, 4.70 ± 0.77 l·min−1·Torr−1; 150 Torr: men, 4.33 ± 1.15 vs. women, 3.21 ± 0.58 l·min−1·Torr−1). Moreover, relative to baseline measures, the ventilatory response to carbon dioxide in the presence of low and high oxygen levels increased to a greater extent in men compared with women after exposure to episodic hypoxia (50 Torr: men, 9.52 ± 1.40 vs. women, 5.97 ± 0.71 l·min−1·Torr−1; 150 Torr: men, 5.73 ± 0.81 vs. women, 3.83 ± 0.56 l·min−1·Torr−1). Thus we conclude that enhancement of the acute ventilatory response to carbon dioxide after episodic hypoxia is sex dependent.


1994 ◽  
Vol 77 (1) ◽  
pp. 313-316 ◽  
Author(s):  
M. Sato ◽  
J. W. Severinghaus ◽  
P. Bickler

Hypoxic ventilatory response (HVR) and hypoxic ventilatory depression (HVD) were measured in six subjects before, during, and after 12 days at 3,810-m altitude (barometric pressure approximately 488 Torr) with and without 15 min of preoxygenation. HVR was tested by 5-min isocapnic steps to 75% arterial O2 saturation measured by pulse oximetry (Spo2) at an isocapnic PCO2 (P*CO2) chosen to set hyperoxic resting ventilation to 140 ml.kg-1.min-1. Hypercapnic ventilatory response (HCVR, 1.min-1.Torr-1) was tested at ambient and high SPO2 6–8 min after a 6- to 10-Torr step increase of end-tidal PCO2 (PETCO2) above P*CO2. HCVR was independent of preoxygenation and was not significantly increased at altitude (when corrected to delta logPCO2). Preoxygenated HVR rose from -1.13 +/- 0.23 (SE) l.min-1.%SPO2(-1) at sea level to -2.17 +/- 0.13 by altitude day 12, without reaching a plateau, and returned to control after return to sea level for 4 days. Ambient HVR was measured at P*CO2 by step reduction of SPO2 from its ambient value (86–91%) to approximately 75%. Ambient HVR slope was not significantly less, but ventilation at equal levels of SPO2 and PCO2 was lower by 13.3 +/- 2.4 l/min on day 2 (SPO2 = 86.2 +/- 2.3) and by 5.9 +/- 3.5 l/min on day 12 (SPO2 = 91.0 +/- 1.5; P < 0.05). This lower ventilation was estimated (from HCVR) to be equivalent to an elevation of the central chemoreceptor PCO2 set point of 9.2 +/- 2.1 Torr on day 2 and 4.5 +/- 1.3 on day 12.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document