Composite reinforcement of timber in bending

2000 ◽  
Vol 27 (5) ◽  
pp. 899-906 ◽  
Author(s):  
Kenneth C Johns ◽  
Simon Lacroix

A promising use for high performance composite materials is to reinforce timber beams. The present paper studies the use of carbon and glass fibres to reinforce sawn timber sections. Consideration is given to strength phenomena of commercial timber alone and in reinforced sections in bending and shear. Anchorage length considerations for composite strips applied to the underside of simple beams are discussed. Experimental results are presented for three geometries of reinforcement using matched samples of 25 pairs of beams, reinforced and not. Results establish that the wood itself in the composite section shows strength increase, and that the increase in moment resistance of the reinforced beams is far greater than that predicted by simple models.Key words: composite material, timber, reinforcement, bending, shear.

2016 ◽  
Vol 689 ◽  
pp. 93-97
Author(s):  
Kyung Ju Min ◽  
Ji Ung Choi ◽  
Ho Sung Lee

Even though carbon/epoxy composite materials have been widely used in aircraft for many years, different requirements are often required for composite materials in spacecraft application due to the space environment. Some of the considerations include modulus and thermal properties for spacecraft while as strength is important for aircraft. For heat pipe panels, space radiator, antennas or optical benches, thermal stability is required for the life of the satellite. In this study, long term creep behavior of high performance composite material is investigated with time-temperature shift factor. The fiber is pitch-based carbon which shows high thermal conductivity and high modulus. It was possible to predict creep compliance after 5 years from dynamic mechanical analysis data. This information is useful to understand the property change during the intended service life of the spacecraft.


1998 ◽  
Author(s):  
A. Crasto ◽  
D. Anderson ◽  
R. Esterline ◽  
K. Han ◽  
C. Hill

2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


Author(s):  
Anna Costanza Russo ◽  
Giustiniano Andreassi ◽  
Achille Di Girolamo ◽  
Silvio Pappada ◽  
Giuseppe Buccoliero ◽  
...  

2010 ◽  
Vol 123-125 ◽  
pp. 7-10
Author(s):  
Ho Sung Lee

In this study, thermal responses of advanced fiber/epoxy matrix composite materials are considered for spacecraft thermal design. These thermal responses are important, because the localized thermal behavior from applied heat loads can induce thermal stresses, which can lead to functional failure of the spacecraft system. Since most of polymer matrices exhibit relatively poor thermal conductivity, the composite materials have been widely considered only for structural application and little for thermal application. However, recently pitch-based high performance carbon fiber becomes available and this fiber shows high thermal conductivity. Because of this combination of low CTE and high thermal conductivity, continuous carbon fiber composites make them suitable for thermal management of spacecraft. The advanced composite material is composed of a continuous high modulus pitch based fiber (YS90A) and DGEBA epoxy resin(RS3232). It was demonstrated that advanced composite material satisfied thermal requirement for a lightweight thermal radiator for heat rejection of communication satellite.


2016 ◽  
Vol 19 (2) ◽  
pp. 1600356 ◽  
Author(s):  
Andreas Fürst ◽  
Achim Mahrle ◽  
Dominik Hipp ◽  
Annett Klotzbach ◽  
Jan Hauptmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document