Prediction of Long-Term Creep Behavior of High Performance Composite Material for Spacecraft

2016 ◽  
Vol 689 ◽  
pp. 93-97
Author(s):  
Kyung Ju Min ◽  
Ji Ung Choi ◽  
Ho Sung Lee

Even though carbon/epoxy composite materials have been widely used in aircraft for many years, different requirements are often required for composite materials in spacecraft application due to the space environment. Some of the considerations include modulus and thermal properties for spacecraft while as strength is important for aircraft. For heat pipe panels, space radiator, antennas or optical benches, thermal stability is required for the life of the satellite. In this study, long term creep behavior of high performance composite material is investigated with time-temperature shift factor. The fiber is pitch-based carbon which shows high thermal conductivity and high modulus. It was possible to predict creep compliance after 5 years from dynamic mechanical analysis data. This information is useful to understand the property change during the intended service life of the spacecraft.

2000 ◽  
Vol 27 (5) ◽  
pp. 899-906 ◽  
Author(s):  
Kenneth C Johns ◽  
Simon Lacroix

A promising use for high performance composite materials is to reinforce timber beams. The present paper studies the use of carbon and glass fibres to reinforce sawn timber sections. Consideration is given to strength phenomena of commercial timber alone and in reinforced sections in bending and shear. Anchorage length considerations for composite strips applied to the underside of simple beams are discussed. Experimental results are presented for three geometries of reinforcement using matched samples of 25 pairs of beams, reinforced and not. Results establish that the wood itself in the composite section shows strength increase, and that the increase in moment resistance of the reinforced beams is far greater than that predicted by simple models.Key words: composite material, timber, reinforcement, bending, shear.


1998 ◽  
Author(s):  
A. Crasto ◽  
D. Anderson ◽  
R. Esterline ◽  
K. Han ◽  
C. Hill

2021 ◽  
Vol 5 (6) ◽  
pp. 151
Author(s):  
Mustapha El Kanzaoui ◽  
Chouaib Ennawaoui ◽  
Saleh Eladaoui ◽  
Abdelowahed Hajjaji ◽  
Abdellah Guenbour ◽  
...  

Given the amount of industrial waste produced and collected in the world today, a recycling and recovery process is needed. The study carried out on this subject focuses on the valorization of one of these industrial wastes, namely the fly ash produced by an ultra-supercritical coal power plant. This paper describes the use and recovery of fly ash as a high percentage reinforcement for the development of a new high-performance composite material for use in various fields. The raw material, fly ash, comes from the staged combustion of coal, which occurs in the furnace of an ultra-supercritical boiler of a coal-fired power plant. Mechanical compression, thermal conductivity, and erosion tests are used to study the mechanical, thermal, and erosion behavior of this new composite material. The mineralogical and textural analyses of samples were characterized using Scanning Electron Microscopy (SEM). SEM confirmed the formation of a new composite by a polymerization reaction. The results obtained are very remarkable, with a high Young’s modulus and a criterion of insulation, which approves the presence of a potential to be exploited in the different fields of materials. In conclusion, the composite material presented in this study has great potential for building material and could represent interesting candidates for the smart city.


2019 ◽  
Vol 18 ◽  
pp. 60-65 ◽  
Author(s):  
Joerg Fischer ◽  
Patrick R. Bradler ◽  
David Schmidtbauer ◽  
Reinhold W. Lang ◽  
Roman Wan-Wendner

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1215 ◽  
Author(s):  
Ke-Chang Hung ◽  
Tung-Lin Wu ◽  
Jyh-Horng Wu

In this study, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS), and titanium(IV) isopropoxide (TTIP) were used as precursor sols to prepare wood-inorganic composites (WICs) by a sol-gel process, and subsequently, the long-term creep behavior of these composites was estimated by application of the stepped isostress method (SSM). The results revealed that the flexural modulus of wood and WICs were in the range of 9.8–10.5 GPa, and there were no significant differences among them. However, the flexural strength of the WICs (93–103 MPa) was stronger than that of wood (86 MPa). Additionally, based on the SSM processes, smooth master curves were obtained from different SSM testing parameters, and they fit well with the experimental data. These results demonstrated that the SSM was a useful approach to evaluate the long-term creep behavior of wood and WICs. According to the Eyring equation, the activation volume of the WICs prepared from MTMOS (0.825 nm3) and TEOS (0.657 nm3) was less than that of the untreated wood (0.832 nm3). Furthermore, the WICs exhibited better performance on the creep resistance than that of wood, except for the WICMTEOS. The reduction of time-dependent modulus for the WIC prepared from MTMOS was 26% at 50 years, which is the least among all WICs tested. These findings clearly indicate that treatment with suitable metal alkoxides could improve the creep resistance of wood.


Author(s):  
Anna Costanza Russo ◽  
Giustiniano Andreassi ◽  
Achille Di Girolamo ◽  
Silvio Pappada ◽  
Giuseppe Buccoliero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document