Bond strength of glass fibre reinforced polymer reinforcing bars in normal and self-consolidating concrete

2005 ◽  
Vol 32 (3) ◽  
pp. 553-560 ◽  
Author(s):  
M Reza Esfahani ◽  
M Reza Kianoush ◽  
M Lachemi

This paper presents the results of an experimental study on bond strength of reinforcing bars made of glass fibre reinforced polymers (GFRP) embedded in normal and self-consolidating concrete. The study included pull-out tests of 36 GFRP reinforcing bars embedded in concrete specimens. Different parameters such as type of concrete, bar location, and cover thickness were considered as variables in different specimens. The results showed that the type of bond failure was by splitting of concrete for all specimens. The bond strength of bottom GFRP reinforcing bars was almost the same for both normal concrete and self-consolidating concrete. For the top bars, however, the bond strength of self-consolidating concrete was less than that of normal concrete.Key words: bond strength, glass FRP, reinforcing bars, top-bar effect, self-consolidating concrete.

2007 ◽  
Vol 34 (3) ◽  
pp. 403-413 ◽  
Author(s):  
Shamim A Sheikh

Several bridge columns, in which concrete was delaminated as a result of steel corrosion, were repaired in the mid 1990s. Different types of grout, including one based on expansive cement, were used to rebuild the damaged columns to their original shape; the columns were then wrapped with glass-fibre-reinforced polymers (GFRPs). The associated lab study indicated that the observed damage caused a reduction of about 20% in the axial-load-carrying capacity of the columns and much larger reductions in ductility and energy-dissipating capacity. The experimental results also showed that the strength and ductility of the columns could be recovered by repairing them with GFRP. Long-term monitoring of three columns repaired in the field using GFRP has indicated their excellent performance. No deterioration has been observed in the fibre-reinforced polymer or in the columns in more than 10 years. Monitoring has also shown a reduction in the rate and associated risk of corrosion over time; thus, this is a more durable retrofitting technique than traditional ones, such as steel jacketing.Key words: concrete, columns, corrosion, cyclic loading, ductility, expansive cement, glass-fibre-reinforced polymers, monitoring, repair, strength.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


Sign in / Sign up

Export Citation Format

Share Document