Improved genetic algorithm for resource-constrained scheduling of large projects

2009 ◽  
Vol 36 (6) ◽  
pp. 1016-1027 ◽  
Author(s):  
Jin-Lee Kim

The generalized model of the resource-constrained project scheduling problem (RCPSP) is valuable because it can be incorporated into the advanced computational methods of commercial project management software for practical applications. A construction schedule generated by most commercial project management programs does not guarantee its optimality when the resources are limited. This paper presents an improved elitist genetic algorithm (GA) for resource-constrained scheduling of large projects. The proposed algorithm allocates multiple renewable resources to activities of a single large-sized project to achieve the objective of minimizing the project duration. A permutation-based decoding procedure is developed using the improved parallel schedule generation scheme. A new parameter, named transformation power, is created in the transformation method of the improved algorithm to ensure that the individual selection process performs correctly. Extensive computational results using a standard set of large-sized multiple resource-constrained project scheduling problems are presented to demonstrate the performance and accuracy of the algorithm.

2019 ◽  
Vol 76 (1) ◽  
pp. 211-241 ◽  
Author(s):  
Zsolt T. Kosztyán ◽  
István Szalkai

Abstract Flexible agile and extreme project management methods have become increasingly popular among practitioners, particularly in the IT and R&D sectors. In contrast to the theoretically and algorithmically well-established and developed trade-off and multimode methods applied in traditional project management methods, flexible project scheduling methods, which are applied in agile, hybrid, and especially extreme project management, lack a principled foundation and algorithmic handling. The aim of this paper is to fill this gap. We propose a matrix-based method that provides scores for alternative project plans that host flexible task dependencies and undecided, supplementary task completion while also handling the new but unplanned tasks. In addition, traditional multimode resource-constrained project scheduling problems are also covered. The proposed method can bridge the flexible and traditional approaches.


2021 ◽  
Vol 11 (2) ◽  
pp. 650
Author(s):  
Muritala Adebayo Isah ◽  
Byung-Soo Kim

Construction projects are planned in a complex and dynamic environment characterized by high risks and uncertainties amidst resource constraints. Assessing construction schedule risk facilitates informed decision-making, especially in a resource-constrained situation, and allows proactive actions to be taken so that project objectives are not jeopardized. This study presents a stochastic multiskilled resource scheduling (SMSRS) model for resource-constrained project scheduling problems (RCSPSP) considering the impact of risk and uncertainty on activity durations. The SMSRS model was developed by integrating a schedule risk analysis (SRA) model (developed in MS Excel) with an existing multiskilled resource scheduling (MSRS) algorithm for the development of a feasible and realistic schedule. The computational experiment carried out on three case projects using the proposed SMSRS model revealed an average percentage deviation of 10.50%, indicating the inherent risk and uncertainty in activity durations of the project schedule. The core contribution of the proposed SMSRS model is that it: (1) presents project practitioners with a simple tool for assessing the risks and uncertainty associated with resource-constrained project schedules so that necessary response actions can be taken to ensure project success; (2) provides the small-scale construction businesses with an affordable tool for evaluating schedule risk and developing a feasible and realistic project schedule.


Sign in / Sign up

Export Citation Format

Share Document