Effects of water–air mixtures on hydraulic transients

2010 ◽  
Vol 37 (9) ◽  
pp. 1189-1200 ◽  
Author(s):  
Oscar Pozos ◽  
Alejandro Sanchez ◽  
Eduardo A. Rodal ◽  
Yuri V. Fairuzov

The purpose of this study is to investigate pressurized pipelines and the potential effects on pressure transients of air entrained at the downstream end of large entrapped air pockets followed by a hydraulic jump in pressurized pipelines. The homogeneous two-phase flow model is used to simulate the transient response of the bubbly mixture after a pump shutdown. The results show that pressure transients are significantly reduced with increasing air-pocket volumes and bubbly flow air content. Experimental investigations were carried out to analyze the impact of different air-pocket volumes located at high points of pressurized pipelines. A case study of an existing pumping system was considered to exemplify the impact of the bubbly flow air content on hydraulic transients.

2017 ◽  
Vol 20 (2) ◽  
pp. 376-392 ◽  
Author(s):  
Oscar Pozos-Estrada

Abstract This paper presents numerical and experimental investigations of the combined effect on pressure transients of air pockets and homogenous water–air bubble mixtures. An air pocket can accumulate at a high point of a pipeline along the control section located at the transition between pipes with sub- and supercritical slope, forcing open channel flow conditions underneath the pocket that ends in a hydraulic jump at the downward sloping pipe. The turbulence action at the jump generates small air bubbles that are entrained and transported along the pipe producing a two-component bubbly flow within the continuous liquid phase. A numerical model is developed, combining the explicit–implicit scheme proposed by McGuire and Morris and the method of characteristics for solving the quasi-linear hyperbolic partial differential equations for transient two-phase flow expressed in conservation form. To verify the proposed model, an experimental apparatus made of PVC was used to carry out hydraulic transient experiments. Tests were conducted in a tank–pipe–valve system and a valve with a pneumatic actuator at the downstream end generated transients. Numerical results at the test section pipe compares favorably with experimental data. The results show that pressure transients are significantly reduced with increasing air-pocket volumes and bubbly flow air content.


Author(s):  
Rik Wemmenhove ◽  
Marc Lefranc

The industrial problem of a jacket platform subjected to Wave-In-Deck load due to an extreme wave is studied numerically by a CFD technique. In particular, details of local flow and slamming-like hydrodynamic impact on structural members are studied. The applied CFD code ComFLOW is a Navier-Stokes equation solver with an improved Volume of Fluid (iVOF) method employed to displace and re-construct fluids free surface. Two different fluid models, single-phase (liquid+void) and two-phase (liquid+compressible gas) can be used, the latter model being capable of simulating gas entrapped in liquid. Local air pockets are formed in corners and nooks of the structure as the incoming wave front approaches. The study presents a comparison of hydrodynamic impact pressures found with and without the air entrapment. Numerical realisation of the two-phase model is considerably more expensive computationally and the study shows possibility and various aspects of its simulation. Accuracy of the numerical solution and relevance of the air pocket formation on the impact pressures and therefore on the exerted structural load are discussed.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
H. A. Warda ◽  
E. M. Wahba ◽  
E. N. Ahmed

Abstract In this study, air–water flow in a downward sloping pipe subsequent to the entrapping of an air pocket is investigated both numerically and experimentally. A transient, two-dimensional computational fluid dynamics model is applied to study the different possible flow regimes and their associated phenomena. The numerical model is based on the Reynolds-averaged Navier–Stokes (RANS) equations and the volume of fluid (VOF) method. Both numerical and experimental investigations provide visualization for the hydraulic jump, the blowback regime, and the full gas transport regime. The numerical results predict that the flow structure in the pipe downstream the toe of the hydraulic jump is subdivided into three distinct regions including the jet layer, the shear zone, and the circulation region, which agrees qualitatively with the previous investigations of the hydraulic jump characteristics in open channel flow. Numerical results are in reasonable agreement with the experimental measurements of the circulation length and the hydraulic jump head loss.


2017 ◽  
Vol 3 (2) ◽  
Author(s):  
Justin H. Spencer

This paper presents the results of experimental investigations into two-phase mass transport in a coarse packed bed representing the Canada Deuterium Uranium (CANDU) end shield. This work contributes to understanding of phenomena impacting in-vessel retention (IVR) during postulated severe accidents in CANDU reactors. The air barbotage technique was used to represent boiling at the calandria tubesheet surface facing the inner cavity of the end shield. Qualitative observations of the near-wall two-phase region were made during air injection. In addition, flow visualization was carried out through the addition of dye to the water. Air flow rate, shielding ball diameter, and cavity dimensions were varied within relevant ranges; and the impact of these parameters on the near-wall region was identified. A brief review of the relevant knowledge base is presented, allowing demonstration of the applicability of the test parameters. The observed phenomena are compared to published results involving similar geometries with capillary porous media.


1996 ◽  
Vol 118 (4) ◽  
pp. 706-709 ◽  
Author(s):  
T. S. Lee ◽  
S. Pejovic

The effects of wave speed variation due to air content on the validity of similarity laws for model studies of hydraulic transients and hydraulic vibrations were investigated. Studies show that hydraulic similarities between geometrically similar model and prototype are reduced substantially for cases involving two- or three-phase flow. For flow with intensive cavitation, analysis shows that there is no hydraulic similarity between model and prototype. For pump discharge pipeline and turbine draft tube where two phase flow of air-water mixture occurs, analysis shows that the natural frequency and the response characteristics of the fluid system are a strong function of the local wave speed variation within the fluid system. This local wave speed variation is a function of the local transient air content and transient pressure.


Author(s):  
Alessandro Terenzi

The analysis of the expansion wave propagation generated by full-bore ruptures of pressurized pipelines containing compressible fluids must be carried out during the assessment of the possible use of crack arrestors. If the internal fluid is two-phase, the sound velocity dependence from the local void fraction and flow regime has to be taken into account, by considering that it may be much lower than for single phase gases, thus promoting crack propagation. In this paper a model for the simulation of an expansion wave in a two-phase fluid pipeline is presented; this model includes several possible descriptions of the thermodynamics and flow regimes, ranging from the simpler homogeneous equilibrium approach to the non-equilibrium slip flow evaluation. The sound velocity trend inside a rarefaction wave can give rise to particular phenomena as curve inversions and jumps. The impact of different formulations on the expansion wave calculation is discussed, giving hints for the design of the pipelines under consideration.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 120
Author(s):  
Amir Taqieddin ◽  
Yuxuan Liu ◽  
Akram N. Alshawabkeh ◽  
Michael R. Allshouse

Understanding the generation, growth, and dynamics of bubbles as they absorb or release dissolved gas in reactive flows is crucial for optimizing the efficiency of electrochemically gas-evolving systems like alkaline water electrolysis or hydrogen production. To better model these bubbly flow systems, we use a coupled level set and volume of fluid approach integrated with a one-fluid transport of species model to study the dynamics of stationary and rising bubbles in reactive two-phase flows. To accomplish this, source terms are incorporated into the continuity and phase conservation equations to allow the bubble to grow or shrink as the species moves through the interface. Verification of the hydrodynamics of the solver for non-reactive systems demonstrates the requisite high fidelity interface capturing and mass conservation necessary to incorporate transport of species. In reactive systems where the species impacts the bubble volume, the model reproduces the theoretically predicted and experimentally measured diffusion-controlled growth rate (i.e., R(t)∝t0.5). The model is then applied to rising bubbles to demonstrate the impact of transport of species on both the bubble velocity and shape as well as the concentration field in its wake. This improved model enables the incorporation of electric fields and chemical reactions that are essential for studying the physicochemical hydrodynamics in multiphysics systems.


Author(s):  
Ingo Gestring ◽  
Dieter Mewes

Devolatilization is a thermal separation process in order to remove low molecular solvents from mixtures of polymers. Extruders with partly filled devolatilization zones are often used for this process. The two-phase flow of the polymer and the evaporating monomers and solvents is complex due to free surfaces. In film flow and two-phase bubbly flow the polymer is heated by dissipation and cooled by evaporation of the low molecular solvent. Temperature and concentration fields are difficult to predict in extruders because of the complex flow field. Therefore the experimental investigations are carried out in special designed apparatus with a flow field similar to that in extruders and in a transparent double-screw extruder to investigate the different flow mechanisms. In order to nucleate bubbles of the volatile component the polymers must be supersaturated and some kind of deformation must exist. The bubble nucleation is shear induced. The changes in concentration during two-phase bubbly flow result in decreasing temperatures. The mass transfer rates are increased due to the large inner surfaces of the bubbles in the foam and so is the cooling by evaporation. The higher the foam expansion the better is the mass transfer.


Sign in / Sign up

Export Citation Format

Share Document