Damped moment-resistant braced frames: a comparative study

1987 ◽  
Vol 14 (3) ◽  
pp. 342-346 ◽  
Author(s):  
Parvaneh Baktash ◽  
Cedric Marsh

This paper reports a study on the comparisons between the behaviours of braced steel building frames with friction joints and with eccentric bracing, under seismic forces. Nonlinear time-history dynamic analysis is used. Friction damping is shown to be of particular merit. Key words: bracing, damping, ductility, dynamics, earthquakes, eccentric; energy dissipation, friction, hysteresis loops, response, steel frames, time history.

Heliyon ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. e06832
Author(s):  
Phu-Cuong Nguyen ◽  
Thanh-Tuan Tran ◽  
Trong Nghia-Nguyen

2013 ◽  
Vol 391 ◽  
pp. 301-304
Author(s):  
Teng Fei Zhong ◽  
Yu Bai ◽  
Ya Juan Sun

The article describes the theory and application of energy dissipation technology. Puts forward the simplified modeling and optimization of damper stiffness parameter method .Through nonlinear time history of the structure show its obvious seismic effect. Prove that the method has certain reference value of the energy dissipation design.


2011 ◽  
Vol 255-260 ◽  
pp. 2350-2354
Author(s):  
Kamran Faraji ◽  
Mahmoud Miri

For vulnerability assessment of structures, different damage indexes have been established by researchers that estimate the structural damage level. In these indexes different parameters have been used for calculating structural damage level. In this paper, damage indexes based on deformation, energy and cycle hysteretic behavior are investigated in order to find a correlation between their numerical values. The selected damage indexes are calculated and compared by applying them in nonlinear time history analysis of low and intermediate rise knee braced steel frames subjected to a set of seven earthquake accelerograms. Correlations between various indexes have been presented graphically and approximate conversion formulas are also provided.


2010 ◽  
Vol 02 (01) ◽  
pp. 115-134
Author(s):  
YEOU-FONG LI ◽  
TSENG-HSING HSU ◽  
K. H. LEN

In this paper, the mechanical behaviors of bridges with unseating prevention devices in the superstructure were investigated. These devices can prevent bridge from unseating and divert most of the seismic forces from transferring to the bridge columns. The models of the rubber bearing, restrainer, and shear key were proposed and implemented into the SAP 2000 to obtain the seismic response of the bridge. The nonlinear time history analysis was used to determine the time history response of the superstructure of the bridge. In the meantime, the Hilbert–Huang Transform (HHT) was used to transfer the displacement–time responses of the superstructure of the bridge into the time–frequency domain, while the spectra are a function of both frequency and time. The spectra of the HHT can be used to determine the operation sequences of the unseating prevention devices.


Author(s):  
Dinh Van Thuat ◽  
Nguyen Dinh Hoa ◽  
Ho Viet Chuong ◽  
Truong Viet Hung

Single-storey industrial steel frames with crances are considered as being vertically irregular in structural configuration and load distribution under strong earthquake excitations. In this paper, various analytical frames with their spans of 20, 26, 32 and 38 m and locations built in Ha Noi and Son La regions were designed to resist dead, roof live, crane and wind loads. The equivalent horizontal and vertical static earthquake loads applied on the frames were determined. Next, by using linear elastic analyses of structures, the effects of vertical seismic actions on the responses of the frames were evaluated in terms of the ratios K1 and K2 at the bottom and top of the columns corresponding to different combinations of dead loads and static earthquake loads, as denoted by CE1, CE2 and CE3. The effects of seismic actions compared with those of wind actions were also evaluated in terms of the ratios K3 and K4. As a result, the effects of vertical seismic actions were significant and increased with the span lengths of the frames. In addition, by using nonlinear inelastic analyses of structures, the levels of the static earthquake loads were determined corresponding to the first yielding and maximum resistances of the frames. Keywords: single-storey industrial buildings; steel frames; span lengths; irregularity; vertical seismic actions; earthquake levels; wind loads


2019 ◽  
Vol 9 (3) ◽  
pp. 4281-4286
Author(s):  
N. W. Bishay-Girges

Eccentrically braced steel frames are structures used to resist lateral loads as they combine the ductility that is characteristic of moment frames and the stiffness associated with braced frames. Damper devices can be used as the main source of energy dissipation and have become more popular lately for the lateral control of structures. Control devices generally reduce damage by increasing structural safety, serviceability and preventing the building from collapse during vibration. This study focused on improving the performance of the structures with a proposed damping system, which has more advantages than eccentrically braced frames (EBFs). It can accommodate many architectural features and make construction and complementarity in the structures easier. The purpose of this study is to evaluate the performance of the structure with the proposed damping system and its construction in the building.


2016 ◽  
Vol 8 (1) ◽  
pp. 1-7
Author(s):  
Mirtaha Hashemi ◽  
Khosrow Bargi

This paper aims to observe effects of fluid-structure-soil interactions on the response modification coefficient of elevated concrete tanks with frame and shaft supporting systems. Because of weaknesses and failures of elevated tanks that have been reported in recent earthquakes and importance of optimum and resistant design and also better seismic performance of these structures, it is essential to investigate on the response modification coefficient of elevated concrete tanks. In this paper, the response modification coefficient has been evaluated by using the numerical modeling. The method of research is a case study. The models have been subjected to an ensemble of important earthquake ground motions. The effects of soilstructure interactions and fluid-structure interactions on seismic behavior of the elevated concrete tanks have been modeled by the equivalent springs and Housner’s method, respectively. Dynamic response of the elevated tanks has been considered by using the nonlinear time history analysis and the discrete plastic hinge approach. Finally, the effects of fluid-structure-soil interactions on the response modification coefficient of the elevated concrete tanks have been discussed by considering results of the analyses. It has been concluded that the codes may underestimate base seismic forces for some seismic regions and some subsoil classes.


2011 ◽  
Vol 243-249 ◽  
pp. 1396-1400
Author(s):  
Yong Sheng Qi ◽  
Feng Hua Zhao ◽  
Jun Wen Zhou

Influence of strength variability of braces on the weak shear type concentrically-braced steel frames is studied by pushover and nonlinear time history analysis method, which leads to a conclusion that the overstrength of brace has obviously detrimental influence on the seismic performance of the structure, induces stronger seismic reaction and higher seismic risk. Another valuable discovery is that after the area of the braces of weak shear type centrically-braced steel frames are determined according to the requirement of current codes, the designer can intentionally specify the structural steel of comparatively low strength (for example, the 2nd group in the paper taking 70% strength of steel Q235) for the brace, which can provide the structure more excellent seismic performance.


2020 ◽  
Vol 10 (6) ◽  
pp. 6393-6398
Author(s):  
P. C. Nguyen

In this work, a new method for nonlinear time-history earthquake analysis of 2D steel frames by a fiber plastic hinge method is presented. The beam-column element based on the displacement-based finite element method is established and formulated in detail using a fiber plastic hinge approach and stability functions. Geometric nonlinearities are taken into accounting by stability functions and the geometric stiffness matrix. A nonlinear dynamic algorithm is established based on the combination of the Newmark integration method and the Newton-Raphson iterative algorithm for solving dynamic equations. The proposed program predicts the nonlinear inelastic responses of 2D steel frames subjected to earthquakes as efficiently and accurately as commercial software. This study also shows that the initial residual stresses of steel should be considered in nonlinear inelastic time-history earthquake analysis of 2D steel frames while SAP2000 does not consider the effects of residual stresses.


Sign in / Sign up

Export Citation Format

Share Document