inelastic responses
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 6)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 73 (11) ◽  
pp. 1081-1092

This study is presented to achieve three objectives: (1) to compare between the inelastic responses of buildings under near and far fault excitations, (2) to investigate the effect of the pulse to structural period ratio, and (3) to evaluate a set of intensity measurements (IMs) in terms of near fault (NF) earthquakes. A real reinforced concrete building with 35 storeys is analysed in the scope of the first and second objectives, whereas the third objective involves three general-frame buildings consisting of 6, 13, and 20 storeys. Results show that the NF excitation can drive the building to exceed its life safety performance level. Furthermore, the accuracy of the IM highly depends on the vibration period of the building and the function used to calculate the IM.


Author(s):  
S. Palumbo ◽  
A. R. Carotenuto ◽  
A. Cutolo ◽  
D. R. Owen ◽  
L. Deseri ◽  
...  

Complex mechanical behaviours are generally met in macroscopically homogeneous media as effects of inelastic responses or as results of unconventional material properties, which are postulated or due to structural systems at the meso/micro-scale. Examples are strain localization due to plasticity or damage and metamaterials exhibiting negative Poisson’s ratios resulting from special porous, eventually buckling, sub-structures. In this work, through ad hoc conceived mechanical paradigms, we show that several non-standard behaviours can be obtained simultaneously by accounting for kinematical discontinuities, without invoking inelastic laws or initial voids. By allowing mutual sliding among rigid tesserae connected by pre-stressed hyperelastic links, we find several unusual kinematics such as localized shear modes and tensile buckling-induced instabilities, leading to deck-of-cards deformations—uncapturable with classical continuum models—and unprecedented ‘bulky’ auxeticity emerging from a densely packed, geometrically symmetrical ensemble of discrete units that deform in a chiral way. Finally, after providing some analytical solutions and inequalities of mechanical interest, we pass to the limit of an infinite number of tesserae of infinitesimal size, thus transiting from discrete to continuum, without the need to introduce characteristic lengths. In the light of the theory of structured deformations, this result demonstrates that the proposed architectured material is nothing else than the first biaxial paradigm of structured continuum —a body that projects, at the macroscopic scale, geometrical changes and disarrangements occurring at the level of its sub-macroscopic elements.


Author(s):  
Q. Peng

This paper aims to investigate the uplift behavior coupled with the non-linearity both in material properties and in geometry deformations of a typical gantry crane under near-field ground motions. First, the highly nonlinear and time variable model considering the uplift-available boundary condition based on the theory of Mohr-Coulomb friction is established of the gantry crane using the OpenSees platform. Then, a series of time-history analyses on this model structure is performed under three near-field seismic loadings with different exceeding probabilities. Furthermore, the comparison between the uplift-available gantry crane and the fixed crane is also carried out to provide in-depth insight into the structural responses under different boundary conditions. Finally, coupling with the material and geometry inelastic behavior, the uplift response process is modeled in this paper and the seismic incident angle from 0 up to 360 degrees is also examined to quantitatively confirm the prioritization of uplift event and the other inelastic responses. And the new conception of uplift probability is first proposed herein to reveal the nature of uncertainty. It is found that uplift behavior plays an essential role in designing and evaluating the seismic performance of gantry cranes; further, the uplift response increases the seismic demand of the gantry crane structure and even causes collapse under strong ground motions.


2020 ◽  
Vol 10 (6) ◽  
pp. 6393-6398
Author(s):  
P. C. Nguyen

In this work, a new method for nonlinear time-history earthquake analysis of 2D steel frames by a fiber plastic hinge method is presented. The beam-column element based on the displacement-based finite element method is established and formulated in detail using a fiber plastic hinge approach and stability functions. Geometric nonlinearities are taken into accounting by stability functions and the geometric stiffness matrix. A nonlinear dynamic algorithm is established based on the combination of the Newmark integration method and the Newton-Raphson iterative algorithm for solving dynamic equations. The proposed program predicts the nonlinear inelastic responses of 2D steel frames subjected to earthquakes as efficiently and accurately as commercial software. This study also shows that the initial residual stresses of steel should be considered in nonlinear inelastic time-history earthquake analysis of 2D steel frames while SAP2000 does not consider the effects of residual stresses.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau8044 ◽  
Author(s):  
S. Brennan Brown ◽  
A. E. Gleason ◽  
E. Galtier ◽  
A. Higginbotham ◽  
B. Arnold ◽  
...  

Under rapid high-temperature, high-pressure loading, lattices exhibit complex elastic-inelastic responses. The dynamics of these responses are challenging to measure experimentally because of high sample density and extremely small relevant spatial and temporal scales. Here, we use an x-ray free-electron laser providing simultaneous in situ direct imaging and x-ray diffraction to spatially resolve lattice dynamics of silicon under high–strain rate conditions. We present the first imaging of a new intermediate elastic feature modulating compression along the axis of applied stress, and we identify the structure, compression, and density behind each observed wave. The ultrafast probe x-rays enabled time-resolved characterization of the intermediate elastic feature, which is leveraged to constrain kinetic inhibition of the phase transformation between 2 and 4 ns. These results not only address long-standing questions about the response of silicon under extreme environments but also demonstrate the potential for ultrafast direct measurements to illuminate new lattice dynamics.


2018 ◽  
Vol 24 (4) ◽  
pp. 112
Author(s):  
Thamir K. Mahmoud ◽  
Hayder A. Al-Baghdadi

In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with non-seismically detailing requirements. The prototype building was subjected to El Centro 1940 NS earthquake at different amplitudes (PGA=0.05g, PGA=0.15g, and PGA=0.32g). The elastic and inelastic responses of the 3D numerical model of the same building were evaluated. The differences between the elastic and inelastic displacements and base shear forces were analyzed. It was found from the results that base shear responses are significantly more sensitive to the numerical model of analysis than displacement responses. The evaluation showed that the base shear force and displacement responses of a two-story R.C. building subjected to severe earthquake excitation are very sensitive to the numerical model used whether it is elastic or inelastic.  


2018 ◽  
Vol 91 (1) ◽  
pp. 136-150 ◽  
Author(s):  
Mei Sze Loo ◽  
Jean Benoît Le Cam ◽  
Andri Andriyana ◽  
Eric Robin

ABSTRACT Palm biodiesel is deemed a promising future fuel substitute for conventional diesel fuel. In line with this perspective, necessary changes in the existing diesel engine system are expected in order to address the issue of material compatibility. One typical degradation observed in rubber components exposed to aggressive solvent such as palm biodiesel during the service is swelling. Thus, the investigation of the effect of swelling on the mechanical response under cyclic loading is prerequisite for durability analysis of such components. In this study, filled and unfilled swollen nitrile rubbers are immersed in conventional diesel and palm biodiesel baths until a 5% swelling level is achieved. Both dry and swollen rubbers are subjected to uniaxial cyclic loading tests. The analysis of the mechanical responses has shown that swelling decreases inelastic effects such as hysteresis, stress softening, and permanent set. For both dry and swollen rubbers, fillers are found to have significant effects in the inelastic responses, whereas the effects of solvent and loading rate are comparable.


Sign in / Sign up

Export Citation Format

Share Document