scholarly journals Nonlinear time-history earthquake analysis for steel frames

Heliyon ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. e06832
Author(s):  
Phu-Cuong Nguyen ◽  
Thanh-Tuan Tran ◽  
Trong Nghia-Nguyen
2011 ◽  
Vol 255-260 ◽  
pp. 2350-2354
Author(s):  
Kamran Faraji ◽  
Mahmoud Miri

For vulnerability assessment of structures, different damage indexes have been established by researchers that estimate the structural damage level. In these indexes different parameters have been used for calculating structural damage level. In this paper, damage indexes based on deformation, energy and cycle hysteretic behavior are investigated in order to find a correlation between their numerical values. The selected damage indexes are calculated and compared by applying them in nonlinear time history analysis of low and intermediate rise knee braced steel frames subjected to a set of seven earthquake accelerograms. Correlations between various indexes have been presented graphically and approximate conversion formulas are also provided.


2011 ◽  
Vol 243-249 ◽  
pp. 1396-1400
Author(s):  
Yong Sheng Qi ◽  
Feng Hua Zhao ◽  
Jun Wen Zhou

Influence of strength variability of braces on the weak shear type concentrically-braced steel frames is studied by pushover and nonlinear time history analysis method, which leads to a conclusion that the overstrength of brace has obviously detrimental influence on the seismic performance of the structure, induces stronger seismic reaction and higher seismic risk. Another valuable discovery is that after the area of the braces of weak shear type centrically-braced steel frames are determined according to the requirement of current codes, the designer can intentionally specify the structural steel of comparatively low strength (for example, the 2nd group in the paper taking 70% strength of steel Q235) for the brace, which can provide the structure more excellent seismic performance.


2020 ◽  
Vol 10 (6) ◽  
pp. 6393-6398
Author(s):  
P. C. Nguyen

In this work, a new method for nonlinear time-history earthquake analysis of 2D steel frames by a fiber plastic hinge method is presented. The beam-column element based on the displacement-based finite element method is established and formulated in detail using a fiber plastic hinge approach and stability functions. Geometric nonlinearities are taken into accounting by stability functions and the geometric stiffness matrix. A nonlinear dynamic algorithm is established based on the combination of the Newmark integration method and the Newton-Raphson iterative algorithm for solving dynamic equations. The proposed program predicts the nonlinear inelastic responses of 2D steel frames subjected to earthquakes as efficiently and accurately as commercial software. This study also shows that the initial residual stresses of steel should be considered in nonlinear inelastic time-history earthquake analysis of 2D steel frames while SAP2000 does not consider the effects of residual stresses.


Author(s):  
Osman Hansu ◽  
Esra Mete Guneyisi

This study addresses an alternative use of viscous dampers (VDs) associated with buckling restrained braces (BRBs) as the innovative seismic protection devices. For this, 4, 8 and 12 storey steel frames were designed with 6.5 m equal span length and 4 m storey height. Thereafter, the VDs and BRBs were placed over the height of each frame considering three different configurations. The structures were modeled using SAP2000 finite element program and evaluated by the nonlinear time history analyses subjected to the six natural accelerograms (1976 Gazlı, 1978 Tabas, 1987 Superstition Hills, 1992 Cape Mendocino, 1994 Northridge and 1999 Chi-Chi). The structural response of the structures with and without VDs and BRBs were studied in terms of variation in the displacement, interstorey drift, absolute acceleration, maximum base shear, time history of roof displacement. The results clearly indicated that the application of VDs and BRBs had remarkable improvement in the earthquake performance of the case study frames by reducing the local/global deformations in the main structural systems and satisfied the serviceability.


1987 ◽  
Vol 14 (3) ◽  
pp. 342-346 ◽  
Author(s):  
Parvaneh Baktash ◽  
Cedric Marsh

This paper reports a study on the comparisons between the behaviours of braced steel building frames with friction joints and with eccentric bracing, under seismic forces. Nonlinear time-history dynamic analysis is used. Friction damping is shown to be of particular merit. Key words: bracing, damping, ductility, dynamics, earthquakes, eccentric; energy dissipation, friction, hysteresis loops, response, steel frames, time history.


2020 ◽  
Vol 47 (4) ◽  
pp. 470-486
Author(s):  
Alireza Esfahanian ◽  
Ali Akbar Aghakouchak

Nonlinear time-history analysis conducted as part of a performance-based seismic design approach often require that the ground motion records are selected and then scaled to a specified level of seismic intensity. In such analyses, besides an adequate structural model, a set of acceleration time-series is needed as the most realistic representation of the seismic action. In this paper, the effects of scaling procedure on seismic demands of steel frames are investigated. To this, two special steel moment-resisting frames with considerable higher mode effects, and two sets of ground motions, including near-fault and far-fault motions are considered. Moreover, three scaling procedures are introduced for performing nonlinear dynamic time-history analysis of structures. Among different demands, lateral roof displacement and interstory drift are selected as seismic demands. The height-wise distribution of demands shows that the inelastic seismic demands of the near-fault pulse-like ground motions differ considerably from those of far-fault ones. These results show that the story drifts are mostly larger for far-fault motions in the upper story levels in comparison to near-fault records and in the lower floors, the reverse is true. Thus, the scaling procedures directly affect the results of seismic demands and choosing different methods would result in varying responses. Moreover, a low-cost and fairly effective procedure is proposed to estimate the target displacement demands of buildings from response-spectrum analyses, considering near-fault effects. The precision of this method is verified by nonlinear time-history analysis results, as the benchmark solution, and acceptable improvements have been achieved.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 73
Author(s):  
Osman Hansu ◽  
Esra Mete Güneyisi

This study addresses an alternative use of viscous dampers (VDs) associated with buckling restrained braces (BRBs) as innovative seismic protection devices. For this purpose, 4-, 8- and 12-story steel bare frames were designed with 6.5 m equal span length and 4 m story height. Thereafter, they were seismically improved by mounting the VDs and BRBs in three patterns, namely outer bays, inner bays, and all bays over the frame heights. The structures were modeled using SAP 2000 software and evaluated by the nonlinear time history analyses subjected to the six natural ground motions. The seismic responses of the structures were investigated for the lateral displacement, interstory drift, absolute acceleration, maximum base shear, and time history of roof displacement. The results clearly indicated that the VDs and BRBs reduced seismic demands significantly compared to the bare frame. Moreover, the all-bay pattern performed better than the others.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Sign in / Sign up

Export Citation Format

Share Document