Application of inelastic response spectra derived from seismic hazard spectral ordinates for Canada: Reply

1997 ◽  
Vol 24 (4) ◽  
pp. 667 ◽  
Author(s):  
J L Humar ◽  
M A Rahgozar



2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.



2010 ◽  
Vol 1 (1) ◽  
pp. 25-41 ◽  
Author(s):  
T. G. Sitharam ◽  
K. S. Vipin

The local site effects play an important role in the evaluation of seismic hazard. The proper evaluation of the local site effects will help in evaluating the amplification factors for different locations. This article deals with the evaluation of peak ground acceleration and response spectra based on the local site effects for the study area. The seismic hazard analysis was done based on a probabilistic logic tree approach and the peak horizontal acceleration (PHA) values at the bed rock level were evaluated. Different methods of site classification have been reviewed in the present work. The surface level peak ground acceleration (PGA) values were evaluated for the entire study area for four different site classes based on NEHRP site classification. The uniform hazard response spectrum (UHRS) has been developed for the city of Bangalore and the details are presented in this work.



1991 ◽  
pp. 309-316
Author(s):  
Ashok K. Jain


1996 ◽  
Vol 23 (5) ◽  
pp. 1051-1063 ◽  
Author(s):  
J. L. Humar ◽  
M. A. Rahgozar

The Geological Survey of Canada is currently producing a suite of new hazard maps for Canada. These maps take into account the additional recorded data obtained during the past 13 years, as well as the new geological and tectonic information that has recently become available. They provide elastic spectral acceleration values for a uniform probability of exceedance of 10% in 50 years. A method of using the uniform hazard spectral values to obtain design response spectral curves for different values of ductility is presented here. The method uses two spectral values obtained from the hazard maps, the peak spectral acceleration for the site and the spectral acceleration corresponding to a period of 0.5 s. Empirical expressions are developed to represent the design response spectra. It is shown that by using inelastic spectral accelerations rather than the elastic spectral values in association with a reduction factor, the new method provides a more reliable estimate of the design forces. Key words: uniform hazard spectra; inelastic spectra, seismic design forces, force modification factor, foundation factor, seismic hazard for Canada.



2015 ◽  
Vol 19 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Ercan Işık ◽  
Mustafa Kutanis

<p>In this study, site-specific earthquake spectra for Bitlis province in Lake Van Basin has been obtained. It is noteworthy that, in probabilistic seismic hazard assessment, as a first stage data from geological studies and records from the instrumental period were compiled to make a seismic source characterization for the study region.The probabilistic seismic hazard curves for Bitlis were developed based on selected appropriate attenuation relationships, at rock sites, with a probability of exceedance 2%, 10% and 50% in 50 year periods. The obtained results were compared with the spectral responses proposed for seismic evaluation and retrofit of the building structure in Turkish Earthquake Code, Section 2. At the end of this study, it is apprehended that the Code proposed earthquake response spectra are not sufficient for the performance evaluation of the existing structures and the current estimations show that the potential seismic hazard research of the Turkey is underestimated in the code.Therefore, site- specific design spectra for the region should be developed, which reflect the characteristics of local sites.</p><p> </p><p><strong>Determinación de espectros de sitio específico locales a través del análisis probabilístico de amenazas sísmicaspara la provincia de Bitlis, Turquía</strong></p><p> </p><p><strong>Resumen</strong></p>En este estudio se obtuvieron espectros de terremoto de sitio específico para la cuenca del Lago de Van, en la provincia de Bitlis, al este de Turquía. La primera fase del trabajo consistió en una evaluación probabilística de riesgo sísmico donde se compilaron los estudios geológicos y registros del período instrumental para hacer una caracterización de fuente sísmica en la región de estudio. Las curvas de amenaza sísmica para la provincia de Bitlis se desarrollaron con base en las relaciones de atenuación apropiada seleccionadas en los sitios rocosos, con una probabilidad de exceso de 2 %, 10 % y 50 % durante 50 años. Los resultados obtenidos se compararon con las respuestas de espectro propuestas para la evaluación sísmica y modernización de estructuras contempladas en el Código de Terremoto de Turquía, en la sección 2. En la parte final de este trabajo se comprende que las respuestas de espectros de terremoto propuestos en el código no son suficientes para la evaluación de desempeño de las estructuras existentes y que las estimaciones actuales muestran que la investigación de amenazas potenciales sísmicas en Turquía está subestimada en el código. Por lo tanto, el diseño de espectros de sitio específico para la región se debe desarrollar, ya que permitiría conocer las singularidades locales.</p>



2017 ◽  
Author(s):  
Duruo Huang ◽  
Wenqi Du

Abstract. In performance-based seismic design, ground-motion time histories are needed for analyzing dynamic responses of nonlinear structural systems. However, the number of strong-motion data at design level is often limited. In order to analyze seismic performance of structures, ground-motion time histories need to be either selected from recorded strong-motion database, or numerically simulated using stochastic approaches. In this paper, a detailed procedure to select proper acceleration time histories from the Next Generation Attenuation (NGA) database for several cities in Taiwan is presented. Target response spectra are initially determined based on a local ground motion prediction equation under representative deterministic seismic hazard analyses. Then several suites of ground motions are selected for these cities using the Design Ground Motion Library (DGML), a recently proposed interactive ground-motion selection tool. The selected time histories are representatives of the regional seismic hazard, and should be beneficial to earthquake studies when comprehensive seismic hazard assessments and site investigations are yet available. Note that this method is also applicable to site-specific motion selections with the target spectra near the ground surface considering the site effect.



2001 ◽  
Vol 127 (9) ◽  
pp. 1013-1020 ◽  
Author(s):  
Isabel Cuesta ◽  
Mark A. Aschheim


Sign in / Sign up

Export Citation Format

Share Document