Isolation and characterization of conditional lethal mutants of Beauveria bassiana

1994 ◽  
Vol 40 (9) ◽  
pp. 766-776 ◽  
Author(s):  
Dwayne D. Hegedus ◽  
George G. Khachatourians

Temperature-sensitive mutants of Beauveria bassiana GK2016 were isolated and characterized. Heat-sensitive mutants that grew at 20 °C but not at 30 °C were generated using mutagenesis with ultraviolet light and several rounds of selection. After 2160 colonies from a heat-sensitive mutant enriched population were screened, 11 heat-sensitive strains were isolated for further study. Five mutant strains, HS1, HS2, HS6, HS9, and HS11, were stable and closely resembled the wild-type strain with respect to morphology, growth rate, and enzyme synthesis at 20 °C. Characterization of macromolecular synthesis at 30 °C using a radiolabelled precursor uptake assay indicated that three mutants, HS6, HS9, and HS11, had reduced levels of DNA, RNA, and protein synthesis at the nonpermissive temperature. Mutants affected in cell division and cell wall synthesis were characterized by microscopy. At 30 °C, mutant HS6 was defective in cellular compartmentalization and formed long, branched, aseptate mycelia that fragmented easily. Mutant HS1 was defective in cell wall biosynthesis and at 30 °C ceased to maintain cell wall integrity and lysed. Mutants HS2 and HS9 possessed temperature-sensitive lesions that could not be specified. None of the mutants were directly affected in either nuclear division or mitosis as evidenced by the accumulation of Giemsa-stainable mitotic nuclei at 30 °C. Bioassays conducted with grasshoppers showed the efficacy of the mutant strains, with the exception of HS11, to be comparable to that of the parent strain, at 20 °C. Conversely, at 32 °C the mutant strains were uninfective whereas the parental strain GK2016 was infective. It is our intention to use these strains to examine fundamental aspects of entomopathology by dissecting fungal growth and development in vitro and extending these observations to pathogenesis in insects.Key words: Beauveria bassiana, temperature-sensitive, mutants, characterization, infection.

Genetics ◽  
1979 ◽  
Vol 92 (4) ◽  
pp. 1041-1059
Author(s):  
Joan M Henson ◽  
Herman Chu ◽  
Carleen A Irwin ◽  
James R Walker

ABSTRACT Escherichia coli mutants with temperature-sensitive (ts) mutations in dnaX and dnaY genes have been isolated. Based on transduction by phage PI, dnaX and Y have been mapped at minutes 10.4-10.5 and 12.1, respectively, in the sequence dnaX purE dnaY. Both dnaXts36 and YtslO are recessive to wild-type alleles present on episomes. F13 carries both dnaX  + and Y  +; the shorter F210 carries dnaY  +, but not X  +. Lambda transducing phages that carry dnaX  + or Y  + have been isolated, and hybrid plasmids of Col E1 and E. coli DNA from the CLARKE and CARBON (1976) collection also carry portions of the dnaX purE dnaY region. Results obtained with the λ transducing phages and the hybrid plasmids suggest that dnaX is a different gene from the previously characterized dnaZ gene, which is also near minute 10.5.—The dnaXts36 mutant, after a shift to 42°, stopped DNA synthesis gradually, and the total amount of DNA increased two-fold. When this mutant was shifted to M°, the rate of DNA synthesis dropped immediately and the final increment of DNA was only 10% of the initial amount. Replicative DNA synthesis in toluene-treated cells was completely inhibited at 42° and was partially in-hibited even at 30°.—When the dnaYtslO mutant was shifted to 42°, DNA synthesis gradually stopped, and the amount of DNA increased 3.6-fold. At 44°, residual DNA synthesis amounted to a two-fold increase. Replicative DNA synthesis in vitro in toluene-treated cells was inactivated after 20 minutes at 42° or by "preincubation" of cells at 42° before toluene treatment.— The dnaX and dnaY products probably function in polymerization of DNA, although participation also in initiation cannot be excluded.


1988 ◽  
Vol 8 (10) ◽  
pp. 3997-4008
Author(s):  
M Wittekind ◽  
J Dodd ◽  
L Vu ◽  
J M Kolb ◽  
J M Buhler ◽  
...  

The isolation and characterization of temperature-sensitive mutations in RNA polymerase I from Saccharomyces cerevisiae are described. A plasmid carrying RPA190, the gene encoding the largest subunit of the enzyme, was subjected to in vitro mutagenesis with hydroxylamine. Using a plasmid shuffle screening system, five different plasmids were isolated which conferred a temperature-sensitive phenotype in haploid yeast strains carrying the disrupted chromosomal RPA190 gene. These temperature-sensitive alleles were transferred to the chromosomal RPA190 locus for mapping and physiology experiments. Accumulation of RNA was found to be defective in all mutant strains at the nonpermissive temperature. In addition, analysis of pulse-labeled RNA from two mutant strains at 37 degrees C showed that the transcription of rRNA genes was decreased, while that of 5S RNA was relatively unaffected. RNA polymerase I was partially purified from several of the mutant strains grown at the nonpermissive temperature and was shown to be deficient when assayed in vitro. Fine-structure mapping and sequencing of the mutant alleles demonstrated that all five mutations were unique. The rpa190-1 and rpa190-5 mutations are tightly clustered in region I (S.S. Broyles and B. Moss, Proc. Natl. Acad. Sci. USA 83:3141-3145, 1986), the putative zinc-binding region that is common to all eucaryotic RNA polymerase large subunits. The rpa190-3 mutation is located between regions III and IV, and a strain carrying it behaves as a mutant that is defective in the synthesis of the enzyme. This mutation lies within a previously unidentified segment of highly conserved amino acid sequence homology that is shared among the largest subunits of eucaryotic nuclear RNA polymerases. Another temperature-sensitive mutation, rpa190-2, creates a UGA nonsense codon.


1988 ◽  
Vol 8 (10) ◽  
pp. 3997-4008 ◽  
Author(s):  
M Wittekind ◽  
J Dodd ◽  
L Vu ◽  
J M Kolb ◽  
J M Buhler ◽  
...  

The isolation and characterization of temperature-sensitive mutations in RNA polymerase I from Saccharomyces cerevisiae are described. A plasmid carrying RPA190, the gene encoding the largest subunit of the enzyme, was subjected to in vitro mutagenesis with hydroxylamine. Using a plasmid shuffle screening system, five different plasmids were isolated which conferred a temperature-sensitive phenotype in haploid yeast strains carrying the disrupted chromosomal RPA190 gene. These temperature-sensitive alleles were transferred to the chromosomal RPA190 locus for mapping and physiology experiments. Accumulation of RNA was found to be defective in all mutant strains at the nonpermissive temperature. In addition, analysis of pulse-labeled RNA from two mutant strains at 37 degrees C showed that the transcription of rRNA genes was decreased, while that of 5S RNA was relatively unaffected. RNA polymerase I was partially purified from several of the mutant strains grown at the nonpermissive temperature and was shown to be deficient when assayed in vitro. Fine-structure mapping and sequencing of the mutant alleles demonstrated that all five mutations were unique. The rpa190-1 and rpa190-5 mutations are tightly clustered in region I (S.S. Broyles and B. Moss, Proc. Natl. Acad. Sci. USA 83:3141-3145, 1986), the putative zinc-binding region that is common to all eucaryotic RNA polymerase large subunits. The rpa190-3 mutation is located between regions III and IV, and a strain carrying it behaves as a mutant that is defective in the synthesis of the enzyme. This mutation lies within a previously unidentified segment of highly conserved amino acid sequence homology that is shared among the largest subunits of eucaryotic nuclear RNA polymerases. Another temperature-sensitive mutation, rpa190-2, creates a UGA nonsense codon.


The formation of N -glycosidic linkages of eukaryotic glycoproteins involves the assembly of a specific lipid-linked precursor oligosaccharide in the endoplasmic reticulum. This oligosaccharide is transferred from the lipid carrier to appropriate asparagine residues during protein synthesis. The protein-linked oligosaccharide then undergoes processing reactions that include both removal and addition of carbohydrate residues. In this paper we report recent studies from our laboratory on the synthesis of asparagine-linked oligosaccharides. In the first part we describe the isolation and characterization of temperature-sensitive mutants of yeast blocked at specific stages in the assembly of the lipid-linked oligosaccharide. In addition, we are using these mutants to clone the genes for the enzymes in this pathway by complementation of the temperature-sensitive phenotype. The second part deals with the topography of asparagine-linked oligosaccharide assembly. Our studies on the transmembrane movement of sugar residues during the assembly of secreted glycoproteins from cytoplasmic precursors are presented. Finally, experiments on the control of protein-linked oligosaccharide processing are described. Recent data are presented on the problem of how specific oligosaccharides are assembled from the common precursors at individual sites on glycoproteins.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Matthew B. McNeil ◽  
Devon D. Dennison ◽  
Catherine D. Shelton ◽  
Tanya Parish

ABSTRACT Oxazolidinones are promising candidates for the treatment of Mycobacterium tuberculosis infections. We isolated linezolid-resistant strains from H37Rv (Euro-American) and HN878 (East-Asian) strains; resistance frequencies were similar in the two strains. Mutations were identified in ribosomal protein L3 (RplC) and the 23S rRNA (rrl). All mutant strains were cross resistant to sutezolid; a subset was cross resistant to chloramphenicol. Mutations in rrl led to growth impairment and decreased fitness that may limit spread in clinical settings.


Virology ◽  
1979 ◽  
Vol 99 (2) ◽  
pp. 329-339 ◽  
Author(s):  
Thomas Adrian ◽  
Brigitte Rosenwirth ◽  
Hans J. Eggers

Sign in / Sign up

Export Citation Format

Share Document