KINETIC STUDIES ON THE MECHANISM OF CYTOPLASMIC L-α-GLYCEROPHOSPHATE DEHYDROGENASE OF RABBIT SKELETAL MUSCLE

1966 ◽  
Vol 44 (10) ◽  
pp. 1301-1317 ◽  
Author(s):  
William J. Black

Studies on initial velocity and product inhibition were carried out on crystalline cytoplasmic NAD+-linked L-α-glycerophosphate dehydrogenase from rabbit muscle, at pH 7.8 and 9.0 at 26 °C. Michaelis and inhibition constants for all the reactants were determined. The kinetic data were consistent with an ordered mechanism in which nicotinamide–adenine dinucleotide (NAD+) or its reduced form (NADH) is bound to the enzyme before the addition of the glycerophosphate (LαGP) or dihydroxyacetone phosphate (DHAP) respectively. At high concentrations NADH, DHAP, and LαGP, but not NAD+, produced substrate inhibition. Combined product-inhibition and dead-end inhibition studies indicated the formation of inactive dead-end complexes of NADH–enzyme, DHAP–enzyme, and LαGP–enzyme–NADH. The low rate constant calculated for the dissociation of the active NADH–enzyme complex suggested an ordered mechanism involving either the formation of an inactive dead-end NADH–enzyme complex or an isomerized NADH–enzyme complex. A choice between these possibilities could not be made on the basis of the present kinetic data. A mechanism for substrate inhibition involving two NAD+-binding sites per mole of enzyme is proposed. Alterations of the ultraviolet absorption spectrum of the enzyme by NAD+ and NADH were in agreement with the conclusion from the kinetic results that the coenzymes are bound to the enzyme before the substrates. DHAP and LαGP caused no alteration in the enzyme spectrum. Spectral changes compatible with the formation of ternary and dead-end complexes were also detected.

1977 ◽  
Vol 167 (2) ◽  
pp. 361-366 ◽  
Author(s):  
E Grazi ◽  
M Blanzieri

The formation and dissociation of the aldolase-dihydroxyacetone phosphate complex were studied by following changes in A240 [Topper, Mehler & Bloom (1957), Science 126, 1287-1289]. It was shown that the enzyme-substrate complex (ES) slowly isomerizes according to the following reaction: (formula: see text) the two first-order rate constants for the isomerization step being k+2 = 1.3s-1 and k-2 = 0.7s-1 at 20 degrees C and pH 7.5. The dissociation of the ES complex was provoked by the addition of the competitive inhibitor hexitol 1,6-bisphosphate. At 20 degrees C and pH 7.5, k+1 was 4.7 X 10(6)M-1-S-1 and k-1 was 30s-1. Both the ES and the ES* complexes react rapidly with 1.7 mM-glyceraldehyde 3-phosphate, the reaction being practically complete in 40 ms. This shows that the ES* complex is not a dead-end complex. Evidence was also provided that aldolase binds and utilizes only the keto form of dihydroxyacetone phosphate.


1965 ◽  
Vol 43 (1) ◽  
pp. 17-24 ◽  
Author(s):  
M. C. Blanchaer

The inhibition by L-α-glycerophosphate of the reduction of dihydroxyacetone phosphate by crystalline rabbit muscle NAD+-linked L-α-glycerophosphate dehydrogenase has been examined. As a result of the measurement of the absorbance at 340 mμ in a photometric test system at 26° containing 0.08–2.0 mM dihydroxyacetone phosphate, 0.14 mM NADH, and 1–1.5 μg crystalline enzyme in 1.5 ml 10 mM EDTA −0.1 M phosphate buffer at pH 7-0, the apparent Michaelis constant (Km) for dihydroxyacetone phosphate was found to be 0.363 mM (± 0.025 S.E.). L-α-Giycerophosphate, but not D-α-glycerophosphate, acted as a competitive inhibitor in this system with an apparent inhibition constant (Ki) of 0.575 mM (± 0.030). Substitution of 50 mM triethanolarnine buffer for the 0.1 M phosphate buffer lowered the Kmto 0.088 mM (± 0.019) and the Kito 0.240 mM (± 0.013). To study the enzyme at lower NADH concentrations, a fluorometric system containing 20–75 μM NADH, 5–370 μM DHAP, and 0.5–2.0 μg enzyme in 1 ml 2 mM EDTA −50 mM triethanolarnine buffer, pH 7.0 at 23°, was used. The apparent Kmfor dihydroxyacetone phosphate and Kifor L-α-glycerophosphate were 0.075 μM (± 0.020) and 0.186 mM (± 0.006) respectively, at a NADH concentration of 75 μM. Lowering the NADH concentration to 20 μM further decreased the apparent Kmand Kivalues to 0.039 mM (± 0.008) and 0.056 mM (± 0.007) respectively.A consideration of the concentrations of dihydroxyacetone phosphate and L-α-glycerophosphate in muscle during contraction suggests that the competitive inhibition of cytoplasmic L-α-glycerophosphate dehydrogenase by its product, L-α-glycerophosphate, may influence the pathway of triose phosphate utilization and also the coupling, by way of the L-α-glycerophosphate cycle, of cytoplasmic NADH-generating reactions to the mitochondrial respiratory chain.


1976 ◽  
Vol 153 (3) ◽  
pp. 551-560 ◽  
Author(s):  
H A O Hill ◽  
R R Lobb ◽  
S L Sharp ◽  
A M Stokes ◽  
J I Harris ◽  
...  

A comparison of the product-inhibition patterns during cleavage of D-fructose 1,6-diphosphate by aldolases from yeast, rabbit muscle and Bacillus stearothermophilus shows an ordered reaction sequence for all three enzymes, with dihydroxyacetone phosphate the last-leaving product. Addition of Zn2+, Co2+, Fe2+, Mn2+ or Cd2+ ions to the inactive apo-(Bacillus stearothermophilus aldolase) restores activity to different extents, whereas Ni2+, Mg2+ or Cu2+ ions have no effect. The cleavage activity of this aldolase is not enhanced by added K+ ion. The effects of metal replacement on thermal stability, Km and Vmax. are given and the possible role of the metal is discussed in the light of these results.


1980 ◽  
Vol 185 (2) ◽  
pp. 289-299 ◽  
Author(s):  
I G Giles ◽  
P C Poat

1. An investigation of the reaction mechanism of the fructose 1,6-bisphosphate-activated pyruvate kinase isolated from the hepatopancreas of the crab Carcinus maenas was conducted. The enzyme was assayed in the presence of 500 microns-fructose 1,6-bisphosphate, 75 mM-KCl and 8 mM-Mg2+free at 25 degrees C. The results are consistent with a rapid-equilibrium random mechanism. 2. Evidence is presented that suggests the formation of two mixed-substrate-product dead-end complexes, enzyme-ADP-pyruvate and enzyme-ADP-ATP. 3. Competitive substrate inhibition was observed for both substrates, ADP and phosphoenolpyruvate, suggesting the formation of the complexes enzyme-ADP-ADP and enzyme-phosphoenolpyruvate-phosphoenolpyruvate in the suggested mechanism. 4. Data from the ATP product-inhibition studies indicate the formation of the complex enzyme-ATP-ATP. This suggests that in the reverse reaction ATP also will show substrate inhibition. 5. The presence of a saturating concentration of fructose 1,6-bisphosphate does not cause full activation of the purified preparations of the enzyme. 6. Pyruvate kinase activity in the supernatant of a hepatopancreas homogenate was completely activated by fructose 1,6-bisphosphate, suggesting that the binding of this ligand to the purified pyruvate kinase was impaired.


1976 ◽  
Vol 157 (3) ◽  
pp. 577-589 ◽  
Author(s):  
I G Giles ◽  
P C Poat ◽  
K A Munday

1. An assay, based on the transfer of label from [gamma-32P]ATP to [32P]phosphoenolpyruvate, suitable for a steady-state kinetic analysis of pyruvate kinase in the reverse direction (i.e. phosphoenolpyruvate synthesis), is described. 2. This assay was used in a kinetic investigation of the rabbit muscle enzyme including initial-rate and product-inhibition experiments, at a pH of 7.4 and constant concentrations of total K+ and free Mg2+. 3. These studies indicate that there is a random release of ADP and phosphoenolpyruvate from the enzyme and that there is a competitive substrate inhibition by ATP. Some of the results were suggestive that the rapid-equilibrium assumption, generally used for this enzyme was not valid. 4. Techniques were developed to measure the rate of isotopic exchange between all the substrate-product pairs. 5. By using these techniques the rates of isotopic exchange at chemical equilibrium were measured. The results indicate that this enzyme does not catalyse a truly rapid-equilibrium random mechanism, although in the forward reaction all initial-rate data obtained to date are consistent with this assumption.


1976 ◽  
Vol 22 (4) ◽  
pp. 417-421 ◽  
Author(s):  
J H Stromme ◽  
L Theodorsen

Abstract Gamma-glutamyltransferase activity in serum is shown to be competitively inhibited by the two substrates gamma-glutamyl-4-nitroanilide and glycylglycine. Awareness of this is of importance when one is choosing final reaction conditions for the assay of the enzyme. Gamma-glutamyltransferase probably acts by a "ping-pong bi-bi" kinetic mechanism, which fits with the double competitive substrate inhibition demonstrated. The product, 4-nitro-aniline, appears to be an uncompetitive dead-end inhibitor of both substrates. Various amino acids, particularly glycine and L-alanine, inhibit the enzyme. Their inhibition patterns are uncompetitive with glycylglycine and competitive with gamma-glutamyl-4-nitroanilide. On the basis of the present and other studies, the Scandinavian Society for Clinical Chemistry and Clinical Physiology is going to recommend for routine use a gamma-glutamyltransferase method in which the final concentrations of gamma-glutamyl-4-nitroanilide and glycylglycine are 4 and 75 mmol/liter, respectively.


1973 ◽  
Vol 131 (2) ◽  
pp. 223-236 ◽  
Author(s):  
S. Ainsworth ◽  
N. Macfarlane

The paper reports a study of the kinetics of the reaction between phosphoenolpyruvate, ADP and Mg2+ catalysed by rabbit muscle pyruvate kinase. The experimental results indicate that the reaction mechanism is equilibrium random-order in type, that the substrates and products are phosphoenolpyruvate, ADP, Mg2+, pyruvate and MgATP, and that dead-end complexes, between pyruvate, ADP and Mg2+, form randomly and exist in equilibrium with themselves and other substrate complexes. Values were determined for the Michaelis, dissociation and inhibition constants of the reaction and are compared with values ascertained by previous workers.


Sign in / Sign up

Export Citation Format

Share Document