Pathways of cytochrome c oxidation by soluble and membrane-bound cytochrome aa3

1980 ◽  
Vol 58 (10) ◽  
pp. 969-977 ◽  
Author(s):  
P. Nicholls ◽  
V. Hildebrandt ◽  
B. C. Hill ◽  
F. Nicholls ◽  
J. M. Wrigglesworth

In media of low ionic strength, membraneous cytochrome c oxidase, isolated cytochrome c oxidase, and proteoliposomal cytochrome c oxidase each bind cytochrome c at two sites, one of low affinity (1 μM > Kd′ > 0.2 μM) and readily reversible and the other of high affinity (0.01 μM > Kd) and weakly reversible. When cytochrome c occupies both sites, including the low affinity site, the maximal turnover measured polarographically with ascorbate and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) is independent of TMPD concentration, and lies between 250 and 400 s−1 (30 °C, pH 7.4) for fully activated systems. The apparent affinity of the enzyme for cytochrome c is, however, TMPD dependent. When cytochrome c occupies only the high-affinity site, the maximal turnover is closely dependent upon the concentration of TMPD, which, unlike ascorbate, can reduce bound cytochrome c. As TMPD concentration is increased, the maximal turnover approaches that seen when both sites are occupied. The lower activity of isolated cytochrome aa3 is due to the presence of inactive or inaccessible enzyme molecules. Incorporation of isolated enzyme into phospholipid vesicles restores full activity to all the subsequently accessible cytochrome aa3 molecules. Negatively charged (asolectin) vesicles show a higher cytochrome c affinity at the low-affinity sites than do the other enzyme preparations. A model for the cytochrome c – cytochrome aa3 complexes is put forward in which both sites, when occupied, are fully catalytically competent, but in which occupation of the "tight" site by a catalytically functional cytochrome c molecule is required for overall oxidation of cytochrome c via the "loose" site.

1996 ◽  
Vol 315 (3) ◽  
pp. 909-916 ◽  
Author(s):  
Francesco MALATESTA ◽  
Giovanni ANTONINI ◽  
Flavia NICOLETTI ◽  
Alessandro GIUFFRÈ ◽  
Emilio D'ITRI ◽  
...  

A covalent complex between cytochrome c oxidase and Saccharomyces cerevisiae iso-1-cytochrome c (called caa3) has been prepared at low ionic strength. Subunit III Cys-115 of beef heart cytochrome c oxidase cross-links by disulphide bond formation to thionitrobenzoate-modified yeast cytochrome c, a derivative shown to bind into the high-affinity site for substrate [Fuller, Darley-Usmar and Capaldi (1981) Biochemistry 20, 7046–7053]. Stopped-flow experiments show that (1) covalently bound yeast cytochrome c cannot donate electrons to cytochrome oxidase, whereas oxidation of exogenously added cytochrome c and electron transfer to cytochrome a are only slightly affected; (2) the steady-state reduction levels of cytochrome c and cytochrome a in the covalent complex caa3 are higher than those found in the native aa3 enzyme. However, (3) Km and Vmax values obtained from the non-linear Eadie–Hofstee plots are very similar in both caa3 and aa3. The results imply that cytochrome c bound to the high-affinity site is not in a configuration optimal for electron transfer.


FEBS Letters ◽  
2008 ◽  
Vol 582 (30) ◽  
pp. 4158-4162 ◽  
Author(s):  
Tatiana V. Vygodina ◽  
Wiolanta Zakirzianova ◽  
Alexander A. Konstantinov

1987 ◽  
Vol 262 (7) ◽  
pp. 3160-3164
Author(s):  
L. Powers ◽  
B. Chance ◽  
Y.C. Ching ◽  
C.P. Lee

1979 ◽  
Vol 34 (11) ◽  
pp. 948-950 ◽  
Author(s):  
Carl Fedtke ◽  
Robert R. Schmidt

Abstract The enzymatic activity from sugar beet leaves which is responsible for the detoxification of the herbicide metamitron (4-amino-4,5-dihydro-3-methyl-6-phenyl-1, 2, 4-triazin-5-one, trade name Goltix®) has been characterized in vitro. The detoxification occurs by rapid deamination in vivo as well as in vitro. However, the deamination in vitro is only maximal under reducing conditions, i. e. with an electron donor and in a nitrogen atmosphere. The electron donor may be cystein, glutathione, dithionite or ascorbate. The enzymatic deamination further requires the addition of cytochrome c and a “supernatant factor”, which may be replaced by FMN, FAD or DCPIP. However, in the presence of FMN or DCPIP cytochrome c is not essential but only stimulatory. The partic­ulate as well as the soluble metamitron deaminating enzyme preparations obtained take up oxygen when supplied with cysteine and FMN. The particulate enzyme appears in the peroxysome-fraction. It is therefore suggested, that the enzymatic deamination of metamitron in sugar beet leaves is mediated by a proxisomal membrane bound electron transport system which alternatively may reduce oxygen or metamitron (deaminating).


2003 ◽  
Vol 185 (16) ◽  
pp. 4748-4754 ◽  
Author(s):  
Daniel H. Broder ◽  
Charles G. Miller

ABSTRACT Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn2+. Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn2+-dependent peptidase is DapE (N-succinyl-l,l-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His6). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn2+-dependent aspartyl peptidase activity relative to the MPD dapE+ strain. In addition, purified DapE-His6 exhibited Mn2+-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn2+ in the high-affinity site and Mn2+ in the low-affinity site.


1970 ◽  
Vol 18 (3) ◽  
pp. 201-210 ◽  
Author(s):  
WINSTON A. ANDERSON

This cytochemical study of differentiating prosobranch spermatids demonstrates changes in the localization of intramitochondrial cytochrome c oxidase activity during the course of mitochondrial fusion and internal reorganization. Using the osmiophilic compound 3,3'-diaminobenzidine, activity for cytochrome c oxidase is localized in or on the internal mitochondrial membranes and within the intracristal compartment of metamorphosing mitochondria. However, some enzyme activity consistently appears in the matrix. Enzyme reaction product in the matrix disappears as the internal membranes become organized, and in mature spermatozoa activity for cytochrome c oxidase appears only on cristae and in the intracristal space. It is hypothesized that positive matrix material could either represent enzyme molecules not yet incorporated into membranes or disaggregated products of membrane breakdown associated with remodeling of the cristae.


1989 ◽  
Vol 263 (3) ◽  
pp. 695-702 ◽  
Author(s):  
A M Field ◽  
E Rowatt ◽  
R J P Williams

Lipopolysaccharide from Escherichia coli C interacts with polyvalent cations at low ionic strength at more than one site. The first site has high affinity with a KD value of 10(-8) M for Ca2+ and even stronger binding for [(NH3)5CoNH2Co(NH3)5]5+ and La3+. The high-affinity site for the latter cations is beyond the sensitivity of the assay method. The second, low-affinity, site for bivalent cations has a Km of 10(-3) M, whereas, for tervalent and quinquevalent metal cations and spermine and hexacyclen (1,4,7,10,13,16-hexa-azacyclo-octadecane), this constant has a value of 10(-5) M. Binding of cations to the high-affinity site does not alter the aggregation state of the lipopolysaccharide, but combination with the low-affinity site gives particles twice the size of those of the sodium salt. Very high Ca2+ concentrations (30 mM) give particles eight times the size of those of the sodium salt.


Sign in / Sign up

Export Citation Format

Share Document