Quantitative contribution of brown adipose tissue thermogenesis to overall metabolism

1984 ◽  
Vol 62 (7) ◽  
pp. 618-622 ◽  
Author(s):  
David O. Foster

Measurement of brown adipose tissue (BAT) blood flow coupled, when feasible, with measurement of the arteriovenous difference in oxygen across the tissue has been used to estimate the contribution of BAT thermogenesis to the metabolism of several species of laboratory, domestic, or wild mammals under various conditions: warm or cold exposure; arousal from hibernation; stimulation of metabolism by exogenous noradrenaline in warm- or cold-acclimated animals, in lean or obese animals, and in animals exhibiting high- or low-diet-induced thermogenesis. These studies have shown that in some species and under certain conditions BAT thermogenesis may account for as much as about one-third of the overall metabolic rate.

1983 ◽  
Vol 214 (1) ◽  
pp. 265-268 ◽  
Author(s):  
K S Galpin ◽  
R G Henderson ◽  
W P T James ◽  
P Trayhurn

Cytochrome oxidase activity and mitochondrial GDP binding were decreased in brown adipose tissue of mice treated chronically with corticosterone. These changes occurred both in corticosterone-treated mice fed ad libitum and in treated mice pair-fed to control animals. Although the dietary stimulation of brown-adipose-tissue thermogenesis was suppressed by corticosterone, the acute response to cold was not affected.


1994 ◽  
Vol 72 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. A. Thornhill ◽  
I. Halvorson

Experiments were designed to determine in the same animal whether electrical stimulation of the posterior hypothalamus and ventromedial hypothalamic nucleus could specifically evoke shivering and nonshivering (brown adipose tissue) thermogenesis, respectively, in anesthetized, normothermic rats. Urethane-anesthetized, male Long–Evans rats, kept at 37 °C, had colonic (Tc), gastrocnemius muscle (Tm), intrascapular brown adipose tissue (TIBAT), and tail (Tt) temperatures measured via thermistor probes, and electromyogram activity (differential multiunit activity from bipolar recording electrodes within gastrocnemius muscle) recorded, before and after unilateral electrical stimulation (monophasic 0.5-ms pulses of 200 μA at 50 Hz for 30 s) of the posterior hypothalamus and ventromedial hypothalamic nucleus (via stereotaxically implanted concentric stimulating electrodes). Each rat showed shivering (increased electromyogram activity) following posterior hypothalamic stimulation, which caused an immediate rise in Tm values with no change in TIBAT or Tt values. Electrical stimulation of the ventromedial hypothalamic nucleus of the same animals elicited no shivering activity, but significant increases in TIBAT values occurred with no change in Tm or Tt values. Results confirm that stimulation of the posterior and ventromedial hypothalamic nuclei in rodents specifically activates shivering and nonshivering (brown adipose tissue) effector mechanisms, respectively, to raise core temperature.Key words: posterior hypothalamus, shivering thermogenesis, ventromedial hypothalamus, intrascapular brown adipose tissue thermogenesis.


1989 ◽  
Vol 67 (4) ◽  
pp. 376-381 ◽  
Author(s):  
Stephanie W. Y. Ma ◽  
David O. Foster

Diet-induced thermogenesis (DIT) in young rats overeating a "cafeteria" (CAF) diet of palatable human foods is characterized by a chronic, propranolol-inhibitable elevation in resting metabolic rate [Formula: see text] and is associated with various changes in brown adipose tissue (BAT) that have been taken as evidence for BAT as the effector of DIT. But direct evidence for participation of BAT in DIT has been lacking. By employing a nonocclusive cannula to sample the venous effluent of interscapular BAT (IBAT) for analysis of its O2 content and measuring tissue blood flow with microspheres, we accomplished direct determination (Fick principle) of the O2 consumption of BAT in conscious CAF rats. In comparison with normophagic controls fed chow, the CAF rats exhibited a 43% increase in metabolizable energy intake, reduced food efficiency, a 22% elevation in resting [Formula: see text] at 28 °C (thermoneutrality) or 24 °C (housing temperature), and characteristic changes in the properties of their BAT (e.g., increased mass, protein content and mitochondrial GDP binding). They also exhibited the greater metabolic response to exogenous noradrenaline characteristic of CAF rats and the near elimination by propranolol of their elevation in [Formula: see text]. By the criterion of their elevated [Formula: see text], the CAF rats were exhibiting DIT at the time of the measurements of BAT blood flow and blood O2 levels. However, BAT O2 consumption was found to be no greater in the CAF rats than in the controls at either 28 or 24 °C. At 28 °C it accounted for less than 1% of whole body [Formula: see text]; at 24 °C it increased to about 10% of overall [Formula: see text] in both diet groups. Direct measurements of BAT O2 consumption during expression of the thermic response to a tube-fed meal were also made in conscious CAF and control rats. Both diet groups exhibited an approximately 15% increase in whole body [Formula: see text] at 90–120 min after the meal. The contribution by BAT to this increase was only 2–3% and did not differ significantly between groups. Thus, the results of these direct measurements of BAT O2 consumption in vivo do not support the theory that DIT in CAF rats is mainly due to increased BAT thermogenesis occurring either chronically or during assimilation of a meal. In further studies of the effector(s) of DIT in CAF rats, partial hepatectomy (two-thirds of the liver removed) was found to acutely reduce the resting [Formula: see text] of CAF rats by 1.85 mL/min, 2.3 times as much as in chow-fed controls. From this difference in response, it was estimated that in the CAF rats liver O2 consumption before hepatectomy exceeded that of the controls by about 1.5 mL/min, an amount that would be sufficient to fully account for the elevation in resting [Formula: see text] of the former. A major role for the liver in the DIT of CAF rats is thus suggested.Key words: cafeteria feeding, diet-induced thermogenesis, thermic effect of food, brown fat, liver.


1987 ◽  
Vol 65 (12) ◽  
pp. 2396-2399 ◽  
Author(s):  
P. Trayhurn ◽  
M. C. Wusteman

Sympathetic activity has been assessed by measurements of noradrenaline turnover in brown adipose tissue and in the heart of golden hamsters during pregnancy and lactation. Noradrenaline turnover was not significantly altered in either tissue in pregnant or lactating hamsters, despite the atrophy of brown adipose tissue that occurs during reproduction. This suggests that sympathetic activity and brown adipose tissue thermogenesis are dissociated during pregnancy and lactation in golden hamsters. The results also indicate that the large increase in food intake during lactation does not lead to a diet-induced stimulation of the sympathetic nervous system.


Sign in / Sign up

Export Citation Format

Share Document