Tyrosine and tyrosinate fluorescence of S-100b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II)

1989 ◽  
Vol 67 (4-5) ◽  
pp. 179-186 ◽  
Author(s):  
R. J. Turner ◽  
R. S. Roche ◽  
R. S. Mani ◽  
C. M. Kay

The properties of the tyrosine and tyrosinate emissions from brain S-100b have been studied by nanosecond time-resolved fluorescence at emission wavelengths in the range 305 to 365 nm. The effect of pH on the fluorescence has been studied at pH 6.5, 7.5, and 8.5 for the Ca(II) apo and holo forms of the protein, and for the apo and holo forms in the presence and absence of Zn(II) at pH 7.5. The fluorescence decay is biexponential at pH 8.5 and triexponential at pH 6.5 and 7.5. The three components of the decay have wavelength and metal ion dependent lifetimes in the ranges 0.06 to 1.05 ns, 0.49 to 3.76 ns, and 3.60 to 14.5 ns. The observation of a long lifetime component at wavelengths characteristic of emission from tyrosinate suggests that in class A proteins this may be a useful diagnostic of the environment of tyrosine in their native structures. The time-resolved emission spectra provide evidence for efficient, subnanosecond protolysis of the excited state of the single tyrosine (Tyr17) under all conditions studied except in 6 M guanidium chloride in which the protein shows only emission from tyrosine (λem 305 nm), suggesting that the tyrosinate emission is a property of the tertiary structure of the native protein. The Zn(II)-dependence of the fluorescence is fully consistent with the earlier suggestion that Tyr17 is near the Zn(II) binding site and remote from the high affinity Ca(II) binding site.Key words: S-100b, time-resolved fluorescence, tyrosinate fluorescence, time-resolved emission spectra.

2003 ◽  
Vol 58 (9-10) ◽  
pp. 581-588 ◽  
Author(s):  
K. A. Kozyra ◽  
J. R. Heldt ◽  
J. Heldt ◽  
M. Engelkec ◽  
H. A. Diehl

Steady-state and time-resolved fluorescence measurements have been performed on Laurdan, dissolved in viscous glycerol, as functions of temperature and concentration. The results indicate spectral heterogeneity of the Laurdan solution. The fluorescence decay time distribution is attributed to radiative deexcitation of spatial conformational forms of locally excited (LE) and charge transfer (CT) states, the S1(CT)EQ state being in thermodynamic and vibrational equilibrium. The lifetimes and contributions of the different fluorescence modes depend on concentration and temperature. The excitation and emission spectra show discontinuous changes with increase of the Laurdan concentration.We suppose that the observed changes are caused by the formation of Laurdan micelle aggregates.


1978 ◽  
Vol 56 (5) ◽  
pp. 743-745 ◽  
Author(s):  
D. M. Rayner ◽  
A. G. Szabo

The fluorescence decay of aqueous tryptophan is shown to be described by a two exponential decay function whose components have life-times of 3.14 ns and 0.51 ns. These components are assigned as the solvent equilibrated 1La and 1Lb, states respectively. The time-resolved emission spectra are presented and can be resolved into two spectra with λmax at 350 nm and 335 nm corresponding to these two states.


2014 ◽  
Vol 289 (39) ◽  
pp. 26817-26828 ◽  
Author(s):  
Christoph Röthlein ◽  
Markus S. Miettinen ◽  
Tejas Borwankar ◽  
Jörg Bürger ◽  
Thorsten Mielke ◽  
...  

2018 ◽  
Vol 42 (10) ◽  
pp. 7993-8000
Author(s):  
Filip Smrčka ◽  
Přemysl Lubal

The thermodynamics and kinetics of formation/dissociation of Eu(iii) and Tb(iii) with the H2DO2A macrocyclic ligand were studied by time-resolved fluorescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document