Isolation and characterization of a developmentally regulated homeobox sequence in the Mexican axolotl Ambystoma mexicanum

1990 ◽  
Vol 68 (3) ◽  
pp. 622-629 ◽  
Author(s):  
Mary Whiteley ◽  
John B. Armstrong

A homeobox-containing genomic DNA fragment was isolated from the Mexican axolotl. This clone was obtained from a partial genomic library enriched for sequences that cross-hybridized with the Drosophila Antp homeobox under low stringency hybridization conditions. DNA sequence analysis revealed that this sequence (Ahox1) was 66% homologous to the Antp homeobox sequence and was most closely related to the mouse Hox-1.6 (84% identity) and Drosophila lab (79% identity) homeobox sequences. Several cross-hybridizing fragments to Ahox1 were detected in both mouse and axolotl genomic DNA. This sequence was also shown to be conserved in other Ambystoma species. Northern blot analysis revealed that genes containing this sequence are developmentally regulated. Transcripts hybridizing to the Ahox1 homeobox probe were detected during the neurula and tail bud stages of development.Key words: axolotl, homeobox, mouse, Drosophila, gene expression.




1984 ◽  
Vol 220 (3) ◽  
pp. 643-652 ◽  
Author(s):  
J M Davidson ◽  
S Shibahara ◽  
M P Schafer ◽  
M Harrison ◽  
C Leach ◽  
...  

A sheep genomic library containing sheep DNA in the bacteriophage vector Charon 4A was screened for elastin-gene sequences with partially purified, 32P-labelled elastin mRNA (mRNAE). A recombinant containing a 9.9-kb (kilobase) insert was selected from several positive clones by secondary and tertiary screening for further characterization. Positive identification of this elastin clone, designated SE1, was made with radiolabelled mRNAE by hydridization-selected translation and Southern blotting of restriction-enzyme fragments of SE1 DNA. Hybridization of either mRNAE or elastin complementary DNA to restriction fragments of SE1 showed that most of these fragments of SE1 contained elastin-coding sequences. Orientation of the insert was established by preferential hybridization of a short complementary elastin DNA to restriction fragments adjacent to the right arm of Charon 4A. Reciprocal hybridizations of nick-translated SE1 and sheep genomic DNA on Southern blots showed that two restriction fragments of SE1 contained sequence elements which were repeated at high frequency in a restriction-endonuclease-EcoR1 digest of total sheep genomic DNA. In the accompanying paper [Davidson, Shibahara, Boyd, Mason, Tolstoshev & Crystal (1984) Biochem. J. 220, 653-663], it is shown that a subcloned fragment of this elastin gene quantitatively and specifically hybridized to mRNAE sequences in sheep tissue RNA. Electron microscopy of SE1-mRNAE hybrids indicated the presence of at least seven large R-loops. Measurements of these structures indicated that SE1 is likely to contain less than 2 kb of coding sequence and more than 8 kb of intervening sequence, with an average exon size of 120 base-pairs. Thus the elastin gene is distributed over an extended region of the sheep genome and contains numerous intervening and coding sequences.



2005 ◽  
Vol 12 (11) ◽  
pp. 1336-1339
Author(s):  
Niamh Harraghy ◽  
Timothy J. Mitchell

ABSTRACT A porcine genomic library was screened for clones containing the promoter of the major acute-phase protein in pigs, inter-α-trypsin heavy chain 4 (ITIH4). Following isolation of the promoter, a functional analysis was performed with Hep3B cells. The promoter was induced by interleukin-6 (IL-6) but not by IL-1β. However, IL-1β was shown to inhibit the IL-6-induced activation of the porcine ITIH4 promoter.



2018 ◽  
Vol 34 (4) ◽  
pp. 974-976
Author(s):  
G. G. Rubio-Castro ◽  
A. Munguia-Vega ◽  
C. Quiñonez-Velázquez ◽  
F. J. García-Rodríguez


2003 ◽  
Vol 69 (8) ◽  
pp. 4927-4934 ◽  
Author(s):  
Jonathan L. Sebat ◽  
Frederick S. Colwell ◽  
Ronald L. Crawford

ABSTRACT Genomic libraries derived from environmental DNA (metagenomic libraries) are useful for characterizing uncultured microorganisms. However, conventional library-screening techniques permit characterization of relatively few environmental clones. Here we describe a novel approach for characterization of a metagenomic library by hybridizing the library with DNA from a set of groundwater isolates, reference strains, and communities. A cosmid library derived from a microcosm of groundwater microorganisms was used to construct a microarray (COSMO) containing ∼1-kb PCR products amplified from the inserts of 672 cosmids plus a set of 16S ribosomal DNA controls. COSMO was hybridized with Cy5-labeled genomic DNA from each bacterial strain, and the results were compared with the results for a common Cy3-labeled reference DNA sample consisting of a composite of genomic DNA from multiple species. The accuracy of the results was confirmed by the preferential hybridization of each strain to its corresponding rDNA probe. Cosmid clones were identified that hybridized specifically to each of 10 microcosm isolates, and other clones produced positive results with multiple related species, which is indicative of conserved genes. Many clones did not hybridize to any microcosm isolate; however, some of these clones hybridized to community genomic DNA, suggesting that they were derived from microbes that we failed to isolate in pure culture. Based on identification of genes by end sequencing of 17 such clones, DNA could be assigned to functions that have potential ecological importance, including hydrogen oxidation, nitrate reduction, and transposition. Metagenomic profiling offers an effective approach for rapidly characterizing many clones and identifying the clones corresponding to unidentified species of microorganisms.



Sign in / Sign up

Export Citation Format

Share Document