Recent developments in solid-state nuclear magnetic resonance of quadrupolar nuclei and applications to biological systems

1998 ◽  
Vol 76 (2-3) ◽  
pp. 429-442 ◽  
Author(s):  
Gang Wu

Recent advances in nuclear magnetic resonance (NMR) methodology and improvements in high-field NMR instrumentation have generated a new wave of research interests in the application of solid-state NMR to the study of quadrupolar nuclei. These developments now permit increasingly complex biological systems to be probed by quadrupolar NMR. In this review I describe a few recent developments in NMR studies of quadrupolar nuclei and demonstrate the potential of solid-state quadrupolar NMR in the study of biological systems. In particular, I discuss the application of solid-state NMR of 17O, 67Zn, 59Co, 23Na, and 39K nuclei with a prognosis for future work.Key words: nuclear magnetic resonance, quadrupole, solid state, biological system.

2004 ◽  
Vol 359 (1446) ◽  
pp. 997-1008 ◽  
Author(s):  
Suzana K. Straus

In recent years, a large number of solid–state nuclear magnetic resonance (NMR) techniques have been developed and applied to the study of fully or significantly isotopically labelled ( 13 C, 15 N or 13 C/ 15 N) biomolecules. In the past few years, the first structures of 13 C/ 15 N–labelled peptides, Gly–Ile and Met–Leu–Phe, and a protein, Src–homology 3 domain, were solved using magic–angle spinning NMR, without recourse to any structural information obtained from other methods. This progress has been made possible by the development of NMR experiments to assign solid–state spectra and experiments to extract distance and orientational information. Another key aspect to the success of solid–state NMR is the advances made in sample preparation. These improvements will be reviewed in this contribution. Future prospects for the application of solid–state NMR to interesting biological questions will also briefly be discussed.


Author(s):  
Heitor Secco Seleghini ◽  
Heloise de Oliveira Pastore ◽  
Fábio Aurélio Bonk

This work reports the characterization using solid-state NMR of the second generation of the UEC family of molecular sieves, such generation is composed by two tridimensional silicoaluminophosphates synthesized from a layered aluminophosphate (AlPO-CJ70). The 3D structures are analogous to SAPO-5 (UEC-4) and SAPO-15 (UEC-5), both were characterized using multinuclear solid-state NMR, 27Al-MQ-MAS and 29Si{27Al} TRAPDOR.


2018 ◽  
Vol 11 (1) ◽  
pp. 485-508 ◽  
Author(s):  
Sharon E. Ashbrook ◽  
John M. Griffin ◽  
Karen E. Johnston

The sensitivity of nuclear magnetic resonance (NMR) spectroscopy to the local atomic-scale environment offers great potential for the characterization of a diverse range of solid materials. Despite offering more information than its solution-state counterpart, solid-state NMR has not yet achieved a similar level of recognition, owing to the anisotropic interactions that broaden the spectral lines and hinder the extraction of structural information. Here, we describe the methods available to improve the resolution of solid-state NMR spectra and the continuing research in this area. We also highlight areas of exciting new and future development, including recent interest in combining experiment with theoretical calculations, the rise of a range of polarization transfer techniques that provide significant sensitivity enhancements, and the progress of in situ measurements. We demonstrate the detailed information available when studying dynamic and disordered solids and discuss the future applications of solid-state NMR spectroscopy across the chemical sciences.


MRS Bulletin ◽  
1992 ◽  
Vol 17 (5) ◽  
pp. 45-52 ◽  
Author(s):  
Jonathan F. Stebbins

From the earliest days of extractive metallurgy, materials scientists and geoscientists have shared common ground. Experimental approaches, such as phase equilibrium and structural studies, are often similar, as are the questions asked in attempts to connect microscopic fundamentals to technologically desired or naturally observed bulk properties. The actual materials studied by both groups are often similar or even identical, such as silicate ceramics and glasses, magnetic oxides, and crystals based on the perovskite structure.Nuclear magnetic resonance (NMR) was applied to solid-state physics shortly after the technique was invented in 1946. Even at the start, many of the samples placed in magnets in physics laboratories were large single crystals of naturally occurring minerals such as gypsum (CaSO4 · 2H2O) and fluorite (CaF2), perhaps borrowed from mineralogist colleagues. In the last 10 years, however, applications to both the earth and materials science have rapidly expanded because of improvements in both technological capabilities and basic theory. Only work on inorganic materials will be discussed here, although 13C NMR studies have proved very useful in characterizing the complex, often inseparable mixtures of large organic molecules found in soils, kerogen, and coal. I will not attempt to thoroughly review the broad and fast growing literature in inorganic applications. Instead, I have chosen examples, primarily from our recent studies, to illustrate the scope of what is and will become possible.Several recent books clearly introduced the basic concepts of solid-state NMR, and applications to crystalline and glassy silicates as well as NMR at high temperature have been reviewed recently.


2004 ◽  
Vol 851 ◽  
Author(s):  
Sarah C. Chinn ◽  
Julie L. Herberg ◽  
April M. Sawvel ◽  
Robert S. Maxwell

ABSTRACTSiloxanes have a wide variety of applications throughout the aerospace industry which take advantage of their exceptional insulating and adhesive properties and general resilience. They also offer a wide range of tailorable engineering properties with changes in composition and filler content. They are, however, subject to degradation in radiatively and thermally harsh environments. We are using solid state nuclear magnetic resonance techniques to investigate changes in network and interfacial structure in siloxane elastomers and their correlations to changes in engineering performance in a series of degraded materials. Nuclear magnetic resonance (NMR) parameters such as transverse (T2) relaxation times, cross relaxation rates, and residual dipolar coupling constants provide excellent probes of changes crosslink density and motional dynamics of the polymers caused by multi-mechanism degradation. The results of NMR studies on aged siloxanes are being used in conjunction with other mechanical tests to provide insight into component failure and degradation kinetics necessary for preliminary lifetime assessments of these materials as well as into the structure-property relationships of the polymers. NMR and magnetic resonance imaging (MRI) results obtained both from high resolution NMR spectrometers as well as low resolution benchtop NMR screening tools will be presented.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2634
Author(s):  
Tetsuo Asakura

This review will introduce very recent studies using solid-state nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulation on the structure and dynamics of spider dragline silks conducted by the author’s research group. Spider dragline silks possess extraordinary mechanical properties by combining high tensile strength with outstanding elongation before breaking, and therefore continue to attract attention of researchers in biology, biochemistry, biophysics, analytical chemistry, polymer technology, textile technology, and tissue engineering. However, the inherently non-crystalline structure means that X-ray diffraction and electron diffraction methods provide only limited information because it is difficult to study the molecular structure of the amorphous region. The most detailed picture of the structure and dynamics of the silks in the solid state experimentally have come from solid-state NMR measurements coupled with stable isotope labeling of the silks and the related silk peptides. In addition, combination of solid-state NMR and MD simulation was very powerful analytical tools to understand the local conformation and dynamics of the spider dragline silk in atomic resolution. In this review, the author will emphasize how solid-state NMR and MD simulation have contributed to a better understanding of the structure and dynamics in the spider dragline silks.


Sign in / Sign up

Export Citation Format

Share Document